Nuprl Lemma : radd-list_functionality

[L1,L2:ℝ List].  radd-list(L1) radd-list(L2) supposing (||L1|| ||L2|| ∈ ℤ) ∧ (∀i:ℕ||L1||. (L1[i] L2[i]))


Proof




Definitions occuring in Statement :  req: y radd-list: radd-list(L) real: select: L[n] length: ||as|| list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  subtract: m cons: [a b] less_than: a < b less_than': less_than'(a;b) le: A ≤ B so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] select: L[n] nil: [] list_ind: list_ind map: map(f;as) lelt: i ≤ j < k int_seg: {i..j-} true: True real: squash: T rev_implies:  Q iff: ⇐⇒ Q subtype_rel: A ⊆B decidable: Dec(P) nat_plus: + top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A nequal: a ≠ b ∈  ge: i ≥  false: False assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q prop: exists: x:A. B[x] bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 implies:  Q all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] nat: has-valueall: has-valueall(a) has-value: (a)↓ callbyvalueall: callbyvalueall radd-list: radd-list(L) and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  add-subtract-cancel select-cons-tl real-regular int_term_value_subtract_lemma itermSubtract_wf subtract_wf add-member-int_seg2 decidable__equal_int lelt_wf nat_plus_properties add_nat_plus bdd-diff-add bdd-diff_weakening equal-wf-T-base false_wf add-is-int-iff cons_wf int_term_value_add_lemma itermAdd_wf l_sum_cons_lemma map_cons_lemma length_of_cons_lemma equal-wf-base l_sum_nil_lemma map_nil_lemma base_wf stuck-spread length_of_nil_lemma nil_wf equal-wf-base-T map_wf l_sum_wf list_induction decidable__le int_seg_properties select_wf req_wf int_seg_wf all_wf list-subtype-bag radd-list_wf-bag req_witness iff_weakening_equal subtype_rel_self subtype_rel_list reg-seq-list-add-as-l_sum true_wf squash_wf bdd-diff_wf accelerate-bdd-diff regular-int-seq_wf nat_plus_wf bdd-diff_functionality reg-seq-list-add_wf less_than_wf int_formula_prop_le_lemma int_formula_prop_less_lemma intformle_wf intformless_wf decidable__lt accelerate_wf req-iff-bdd-diff int-to-real_wf req_weakening int_formula_prop_wf int_formula_prop_not_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformnot_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf full-omega-unsat non_neg_length neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf length_wf eq_int_wf length_wf_nat int-value-type le_wf set-value-type nat_wf value-type-has-value valueall-type-real-list evalall-reduce real-valueall-type list-valueall-type real_wf list_wf valueall-type-has-valueall
Rules used in proof :  functionExtensionality hyp_replacement applyLambdaEquality closedConclusion baseApply pointwiseFunctionality addEquality productEquality universeEquality baseClosed imageMemberEquality imageElimination functionEquality setEquality rename setElimination applyEquality dependent_set_memberEquality independent_pairFormation voidEquality isect_memberEquality int_eqEquality approximateComputation voidElimination independent_functionElimination cumulativity instantiate dependent_functionElimination promote_hyp dependent_pairFormation equalitySymmetry equalityTransitivity equalityElimination unionElimination lambdaFormation natural_numberEquality lambdaEquality intEquality because_Cache callbyvalueReduce hypothesisEquality independent_isectElimination hypothesis isectElimination extract_by_obid sqequalRule thin productElimination sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[L1,L2:\mBbbR{}  List].
    radd-list(L1)  =  radd-list(L2)  supposing  (||L1||  =  ||L2||)  \mwedge{}  (\mforall{}i:\mBbbN{}||L1||.  (L1[i]  =  L2[i]))



Date html generated: 2018_05_22-PM-01_20_45
Last ObjectModification: 2018_05_21-AM-00_04_41

Theory : reals


Home Index