Nuprl Lemma : rbetween-convex

x,a,b:ℝ.  ((a < b)  a≤x≤ (∃t:ℝ((r0 ≤ t) ∧ (t ≤ r1) ∧ (x ((t a) ((r1 t) b))))))


Proof




Definitions occuring in Statement :  rbetween: x≤y≤z rleq: x ≤ y rless: x < y rsub: y req: y rmul: b radd: b int-to-real: r(n) real: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rbetween: x≤y≤z and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a exists: x:A. B[x] rneq: x ≠ y guard: {T} or: P ∨ Q prop: cand: c∧ B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top rdiv: (x/y)
Lemmas referenced :  rless-implies-rless int-to-real_wf rsub_wf rdiv_wf rless_wf rmul_preserves_rleq rmul_preserves_req radd_wf rmul_wf rleq_wf req_wf rbetween_wf real_wf itermSubtract_wf itermVar_wf itermConstant_wf req-iff-rsub-is-0 rminus_wf rmul-zero-both rinv_wf2 itermMultiply_wf itermAdd_wf itermMinus_wf rleq-implies-rleq req_weakening real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma rleq_functionality req_transitivity radd_functionality rminus_functionality rmul-rinv3 real_term_value_mul_lemma real_term_value_add_lemma real_term_value_minus_lemma req_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination isectElimination natural_numberEquality hypothesis hypothesisEquality independent_isectElimination dependent_pairFormation because_Cache sqequalRule inrFormation independent_pairFormation productEquality independent_functionElimination approximateComputation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}x,a,b:\mBbbR{}.    ((a  <  b)  {}\mRightarrow{}  a\mleq{}x\mleq{}b  {}\mRightarrow{}  (\mexists{}t:\mBbbR{}.  ((r0  \mleq{}  t)  \mwedge{}  (t  \mleq{}  r1)  \mwedge{}  (x  =  ((t  *  a)  +  ((r1  -  t)  *  b))))))



Date html generated: 2018_05_22-PM-01_50_02
Last ObjectModification: 2017_10_20-PM-05_16_32

Theory : reals


Home Index