Nuprl Lemma : rbetween-convex
∀x,a,b:ℝ.  ((a < b) ⇒ a≤x≤b ⇒ (∃t:ℝ. ((r0 ≤ t) ∧ (t ≤ r1) ∧ (x = ((t * a) + ((r1 - t) * b))))))
Proof
Definitions occuring in Statement : 
rbetween: x≤y≤z, 
rleq: x ≤ y, 
rless: x < y, 
rsub: x - y, 
req: x = y, 
rmul: a * b, 
radd: a + b, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
rbetween: x≤y≤z, 
and: P ∧ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
exists: ∃x:A. B[x], 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
prop: ℙ, 
cand: A c∧ B, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
top: Top, 
rdiv: (x/y)
Lemmas referenced : 
rless-implies-rless, 
int-to-real_wf, 
rsub_wf, 
rdiv_wf, 
rless_wf, 
rmul_preserves_rleq, 
rmul_preserves_req, 
radd_wf, 
rmul_wf, 
rleq_wf, 
req_wf, 
rbetween_wf, 
real_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
rminus_wf, 
rmul-zero-both, 
rinv_wf2, 
itermMultiply_wf, 
itermAdd_wf, 
itermMinus_wf, 
rleq-implies-rleq, 
req_weakening, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rleq_functionality, 
req_transitivity, 
radd_functionality, 
rminus_functionality, 
rmul-rinv3, 
real_term_value_mul_lemma, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
req_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
independent_isectElimination, 
dependent_pairFormation, 
because_Cache, 
sqequalRule, 
inrFormation, 
independent_pairFormation, 
productEquality, 
independent_functionElimination, 
approximateComputation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}x,a,b:\mBbbR{}.    ((a  <  b)  {}\mRightarrow{}  a\mleq{}x\mleq{}b  {}\mRightarrow{}  (\mexists{}t:\mBbbR{}.  ((r0  \mleq{}  t)  \mwedge{}  (t  \mleq{}  r1)  \mwedge{}  (x  =  ((t  *  a)  +  ((r1  -  t)  *  b))))))
Date html generated:
2018_05_22-PM-01_50_02
Last ObjectModification:
2017_10_20-PM-05_16_32
Theory : reals
Home
Index