Nuprl Lemma : rdiv-int-fractions

a,b:ℤ. ∀c,d:ℕ+.  ((r(a)/r(c))/(r(b)/r(d))) (r(a d)/r(c b)) supposing ¬(b 0 ∈ ℤ)


Proof




Definitions occuring in Statement :  rdiv: (x/y) req: y int-to-real: r(n) nat_plus: + uimplies: supposing a all: x:A. B[x] not: ¬A multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] nat_plus: + rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: subtype_rel: A ⊆B uiff: uiff(P;Q) rdiv: (x/y) req_int_terms: t1 ≡ t2 nequal: a ≠ b ∈  rev_uimplies: rev_uimplies(P;Q) true: True squash: T
Lemmas referenced :  rmul_preserves_rneq_iff2 rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf not_wf equal-wf-base int_subtype_base nat_plus_wf rneq-int intformeq_wf int_formula_prop_eq_lemma rmul_wf rinv_wf2 itermSubtract_wf itermMultiply_wf req-iff-rsub-is-0 rmul-one rmul-zero-both rneq_wf rneq_functionality req_transitivity rmul_functionality req_weakening rmul-rinv real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma int_entire_a real_wf equal_wf rmul_preserves_req req_witness req_functionality req_inversion rmul-int rmul_assoc rinv-mul-as-rdiv rmul-rinv3 req_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis setElimination rename because_Cache independent_isectElimination sqequalRule inrFormation productElimination independent_functionElimination natural_numberEquality unionElimination approximateComputation dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation applyEquality baseClosed addLevel multiplyEquality equalityTransitivity equalitySymmetry imageElimination imageMemberEquality universeEquality

Latex:
\mforall{}a,b:\mBbbZ{}.  \mforall{}c,d:\mBbbN{}\msupplus{}.    ((r(a)/r(c))/(r(b)/r(d)))  =  (r(a  *  d)/r(c  *  b))  supposing  \mneg{}(b  =  0)



Date html generated: 2018_05_22-PM-01_33_12
Last ObjectModification: 2017_10_22-PM-03_46_26

Theory : reals


Home Index