Nuprl Lemma : rdiv-int-fractions
∀a,b:ℤ. ∀c,d:ℕ+.  ((r(a)/r(c))/(r(b)/r(d))) = (r(a * d)/r(c * b)) supposing ¬(b = 0 ∈ ℤ)
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
req: x = y
, 
int-to-real: r(n)
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
nequal: a ≠ b ∈ T 
, 
rev_uimplies: rev_uimplies(P;Q)
, 
true: True
, 
squash: ↓T
Lemmas referenced : 
rmul_preserves_rneq_iff2, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
not_wf, 
equal-wf-base, 
int_subtype_base, 
nat_plus_wf, 
rneq-int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
rmul_wf, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
req-iff-rsub-is-0, 
rmul-one, 
rmul-zero-both, 
rneq_wf, 
rneq_functionality, 
req_transitivity, 
rmul_functionality, 
req_weakening, 
rmul-rinv, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
int_entire_a, 
real_wf, 
equal_wf, 
rmul_preserves_req, 
req_witness, 
req_functionality, 
req_inversion, 
rmul-int, 
rmul_assoc, 
rinv-mul-as-rdiv, 
rmul-rinv3, 
req_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
inrFormation, 
productElimination, 
independent_functionElimination, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
applyEquality, 
baseClosed, 
addLevel, 
multiplyEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
imageMemberEquality, 
universeEquality
Latex:
\mforall{}a,b:\mBbbZ{}.  \mforall{}c,d:\mBbbN{}\msupplus{}.    ((r(a)/r(c))/(r(b)/r(d)))  =  (r(a  *  d)/r(c  *  b))  supposing  \mneg{}(b  =  0)
Date html generated:
2018_05_22-PM-01_33_12
Last ObjectModification:
2017_10_22-PM-03_46_26
Theory : reals
Home
Index