Nuprl Lemma : real-ring_wf

real-ring() ∈ CRng


Proof




Definitions occuring in Statement :  real-ring: real-ring() member: t ∈ T crng: CRng
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q prop: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) crng: CRng rng: Rng real-ring: real-ring() rng_sig: RngSig subtype_rel: A ⊆B ring_p: IsRing(T;plus;zero;neg;times;one) rng_car: |r| pi1: fst(t) rng_plus: +r pi2: snd(t) rng_zero: 0 rng_minus: -r rng_times: * rng_one: 1 bilinear: BiLinear(T;pl;tm) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) infix_ap: y ident: Ident(T;op;id) assoc: Assoc(T;op) inverse: Inverse(T;op;id;inv) cand: c∧ B req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top comm: Comm(T;op)
Lemmas referenced :  quotient_wf real_wf req_wf req-equiv quotient-member-eq radd_wf radd_functionality rmul_wf rmul_functionality rminus_wf req_functionality rminus_functionality req_weakening ring_p_wf rng_car_wf rng_plus_wf rng_zero_wf rng_minus_wf rng_times_wf rng_one_wf comm_wf bfalse_wf int-to-real_wf subtype_quotient it_wf bool_wf req-implies-req radd-rminus radd-rminus-both radd-assoc rsub_wf itermSubtract_wf itermVar_wf itermAdd_wf itermConstant_wf req-iff-rsub-is-0 rmul-assoc itermMultiply_wf rmul-distrib1 rmul-distrib2 real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_var_lemma real_term_value_add_lemma real_term_value_const_lemma real_term_value_mul_lemma rmul_comm
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt pointwiseFunctionalityForEquality functionEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule hypothesisEquality inhabitedIsType universeIsType independent_isectElimination because_Cache pertypeElimination promote_hyp productElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination productIsType equalityIstype sqequalBase dependent_set_memberEquality_alt setElimination rename dependent_pairEquality_alt closedConclusion natural_numberEquality applyEquality inrEquality_alt functionIsType unionIsType isect_memberFormation_alt isect_memberEquality_alt axiomEquality isectIsTypeImplies independent_pairFormation independent_pairEquality approximateComputation int_eqEquality voidElimination

Latex:
real-ring()  \mmember{}  CRng



Date html generated: 2019_10_30-AM-08_09_47
Last ObjectModification: 2019_09_18-PM-04_19_00

Theory : reals


Home Index