Nuprl Lemma : real-ring_wf
real-ring() ∈ CRng
Proof
Definitions occuring in Statement : 
real-ring: real-ring()
, 
member: t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
crng: CRng
, 
rng: Rng
, 
real-ring: real-ring()
, 
rng_sig: RngSig
, 
subtype_rel: A ⊆r B
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
rng_car: |r|
, 
pi1: fst(t)
, 
rng_plus: +r
, 
pi2: snd(t)
, 
rng_zero: 0
, 
rng_minus: -r
, 
rng_times: *
, 
rng_one: 1
, 
bilinear: BiLinear(T;pl;tm)
, 
monoid_p: IsMonoid(T;op;id)
, 
group_p: IsGroup(T;op;id;inv)
, 
infix_ap: x f y
, 
ident: Ident(T;op;id)
, 
assoc: Assoc(T;op)
, 
inverse: Inverse(T;op;id;inv)
, 
cand: A c∧ B
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
, 
comm: Comm(T;op)
Lemmas referenced : 
quotient_wf, 
real_wf, 
req_wf, 
req-equiv, 
quotient-member-eq, 
radd_wf, 
radd_functionality, 
rmul_wf, 
rmul_functionality, 
rminus_wf, 
req_functionality, 
rminus_functionality, 
req_weakening, 
ring_p_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_zero_wf, 
rng_minus_wf, 
rng_times_wf, 
rng_one_wf, 
comm_wf, 
bfalse_wf, 
int-to-real_wf, 
subtype_quotient, 
it_wf, 
bool_wf, 
req-implies-req, 
radd-rminus, 
radd-rminus-both, 
radd-assoc, 
rsub_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
rmul-assoc, 
itermMultiply_wf, 
rmul-distrib1, 
rmul-distrib2, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
real_term_value_const_lemma, 
real_term_value_mul_lemma, 
rmul_comm
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality_alt, 
pointwiseFunctionalityForEquality, 
functionEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
hypothesisEquality, 
inhabitedIsType, 
universeIsType, 
independent_isectElimination, 
because_Cache, 
pertypeElimination, 
promote_hyp, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
productIsType, 
equalityIstype, 
sqequalBase, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
dependent_pairEquality_alt, 
closedConclusion, 
natural_numberEquality, 
applyEquality, 
inrEquality_alt, 
functionIsType, 
unionIsType, 
isect_memberFormation_alt, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
independent_pairFormation, 
independent_pairEquality, 
approximateComputation, 
int_eqEquality, 
voidElimination
Latex:
real-ring()  \mmember{}  CRng
Date html generated:
2019_10_30-AM-08_09_47
Last ObjectModification:
2019_09_18-PM-04_19_00
Theory : reals
Home
Index