Nuprl Lemma : real-subset-connected

X:ℝ ⟶ ℙ
  ((∀x:ℝSqStable(X x))
   (∀x:ℝ. ∀y:{y:ℝy} .  ((X y)  (X x)))
   dense-in-interval((-∞, ∞);X)
   (∀Q:{x:ℝx}  ⟶ 𝔹. ∃Q':ℝ ⟶ 𝔹. ∀x:{x:ℝx} Q' x)
   Connected({x:ℝx} ))


Proof




Definitions occuring in Statement :  connected: Connected(X) dense-in-interval: dense-in-interval(I;X) riiint: (-∞, ∞) req: y real: bool: 𝔹 sq_stable: SqStable(P) prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T subtype_rel: A ⊆B prop: uall: [x:A]. B[x] exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a top: Top istype: istype(T) or: P ∨ Q and: P ∧ Q guard: {T} nat_plus: + decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False real: cand: c∧ B le: A ≤ B less_than': less_than'(a;b) accelerate: accelerate(k;f) int_seg: {i..j-} has-value: (a)↓ true: True nequal: a ≠ b ∈  sq_type: SQType(T) lelt: i ≤ j < k less_than: a < b squash: T pi1: fst(t) sq_exists: x:A [B[x]] btrue: tt ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q sq_stable: SqStable(P) connected: Connected(X) bfalse: ff isl: isl(x) isr: isr(x) rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q)
Lemmas referenced :  real_wf subtype_rel_self bool_wf dense-in-interval_wf riiint_wf subtype_rel_dep_function i-member_wf member_riiint_lemma istype-void req_wf sq_stable_wf istype-assert real-subset-connected-lemma dense-in-reals-implies istype-nat converges-to_functionality req_weakening req_inversion connectedness-main-lemma-ext nat_wf nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf istype-less_than accelerate_wf subtype_rel_sets_simple nat_plus_wf regular-int-seq_wf real-regular int_seg_wf subtype_rel_function int_seg_subtype_nat_plus istype-false accelerate-req value-type-has-value int-value-type subtype_base_sq int_subtype_base int_seg_properties decidable__le intformle_wf int_formula_prop_le_lemma istype-le subtype_rel_set weak-continuity-principle-real-double btrue_wf iff_imp_equal_bool iff_weakening_equal istype-universe true_wf squash_wf equal_wf bool_subtype_base sq_stable__req isr_wf isl_wf outl_wf assert_of_bnot outr_wf bfalse_wf assert_functionality_wrt_uiff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalRule functionIsType setIsType universeIsType introduction extract_by_obid hypothesis applyEquality hypothesisEquality thin instantiate sqequalHypSubstitution isectElimination universeEquality productIsType because_Cache equalityIstype setElimination rename cumulativity lambdaEquality_alt setEquality independent_isectElimination dependent_functionElimination isect_memberEquality_alt voidElimination isect_memberFormation_alt unionIsType inhabitedIsType dependent_set_memberEquality_alt independent_functionElimination productElimination equalityTransitivity equalitySymmetry functionExtensionality multiplyEquality natural_numberEquality unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality independent_pairFormation functionEquality intEquality callbyvalueReduce sqleReflexivity divideEquality baseClosed sqequalBase imageElimination applyLambdaEquality closedConclusion promote_hyp inrFormation_alt inlFormation_alt imageMemberEquality unionEquality inrEquality_alt voidEquality

Latex:
\mforall{}X:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}
    ((\mforall{}x:\mBbbR{}.  SqStable(X  x))
    {}\mRightarrow{}  (\mforall{}x:\mBbbR{}.  \mforall{}y:\{y:\mBbbR{}|  x  =  y\}  .    ((X  y)  {}\mRightarrow{}  (X  x)))
    {}\mRightarrow{}  dense-in-interval((-\minfty{},  \minfty{});X)
    {}\mRightarrow{}  (\mforall{}Q:\{x:\mBbbR{}|  X  x\}    {}\mrightarrow{}  \mBbbB{}.  \mexists{}Q':\mBbbR{}  {}\mrightarrow{}  \mBbbB{}.  \mforall{}x:\{x:\mBbbR{}|  X  x\}  .  Q'  x  =  Q  x)
    {}\mRightarrow{}  Connected(\{x:\mBbbR{}|  X  x\}  ))



Date html generated: 2019_10_30-AM-07_35_42
Last ObjectModification: 2019_01_31-AM-10_42_28

Theory : reals


Home Index