Nuprl Lemma : real-subset-connected
∀X:ℝ ⟶ ℙ
  ((∀x:ℝ. SqStable(X x))
  
⇒ (∀x:ℝ. ∀y:{y:ℝ| x = y} .  ((X y) 
⇒ (X x)))
  
⇒ dense-in-interval((-∞, ∞);X)
  
⇒ (∀Q:{x:ℝ| X x}  ⟶ 𝔹. ∃Q':ℝ ⟶ 𝔹. ∀x:{x:ℝ| X x} . Q' x = Q x)
  
⇒ Connected({x:ℝ| X x} ))
Proof
Definitions occuring in Statement : 
connected: Connected(X)
, 
dense-in-interval: dense-in-interval(I;X)
, 
riiint: (-∞, ∞)
, 
req: x = y
, 
real: ℝ
, 
bool: 𝔹
, 
sq_stable: SqStable(P)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
top: Top
, 
istype: istype(T)
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
guard: {T}
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
real: ℝ
, 
cand: A c∧ B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
accelerate: accelerate(k;f)
, 
int_seg: {i..j-}
, 
has-value: (a)↓
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
sq_type: SQType(T)
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
pi1: fst(t)
, 
sq_exists: ∃x:A [B[x]]
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
sq_stable: SqStable(P)
, 
connected: Connected(X)
, 
bfalse: ff
, 
isl: isl(x)
, 
isr: isr(x)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
Lemmas referenced : 
real_wf, 
subtype_rel_self, 
bool_wf, 
dense-in-interval_wf, 
riiint_wf, 
subtype_rel_dep_function, 
i-member_wf, 
member_riiint_lemma, 
istype-void, 
req_wf, 
sq_stable_wf, 
istype-assert, 
real-subset-connected-lemma, 
dense-in-reals-implies, 
istype-nat, 
converges-to_functionality, 
req_weakening, 
req_inversion, 
connectedness-main-lemma-ext, 
nat_wf, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-less_than, 
accelerate_wf, 
subtype_rel_sets_simple, 
nat_plus_wf, 
regular-int-seq_wf, 
real-regular, 
int_seg_wf, 
subtype_rel_function, 
int_seg_subtype_nat_plus, 
istype-false, 
accelerate-req, 
value-type-has-value, 
int-value-type, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
istype-le, 
subtype_rel_set, 
weak-continuity-principle-real-double, 
btrue_wf, 
iff_imp_equal_bool, 
iff_weakening_equal, 
istype-universe, 
true_wf, 
squash_wf, 
equal_wf, 
bool_subtype_base, 
sq_stable__req, 
isr_wf, 
isl_wf, 
outl_wf, 
assert_of_bnot, 
outr_wf, 
bfalse_wf, 
assert_functionality_wrt_uiff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
functionIsType, 
setIsType, 
universeIsType, 
introduction, 
extract_by_obid, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
instantiate, 
sqequalHypSubstitution, 
isectElimination, 
universeEquality, 
productIsType, 
because_Cache, 
equalityIstype, 
setElimination, 
rename, 
cumulativity, 
lambdaEquality_alt, 
setEquality, 
independent_isectElimination, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
isect_memberFormation_alt, 
unionIsType, 
inhabitedIsType, 
dependent_set_memberEquality_alt, 
independent_functionElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionExtensionality, 
multiplyEquality, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
independent_pairFormation, 
functionEquality, 
intEquality, 
callbyvalueReduce, 
sqleReflexivity, 
divideEquality, 
baseClosed, 
sqequalBase, 
imageElimination, 
applyLambdaEquality, 
closedConclusion, 
promote_hyp, 
inrFormation_alt, 
inlFormation_alt, 
imageMemberEquality, 
unionEquality, 
inrEquality_alt, 
voidEquality
Latex:
\mforall{}X:\mBbbR{}  {}\mrightarrow{}  \mBbbP{}
    ((\mforall{}x:\mBbbR{}.  SqStable(X  x))
    {}\mRightarrow{}  (\mforall{}x:\mBbbR{}.  \mforall{}y:\{y:\mBbbR{}|  x  =  y\}  .    ((X  y)  {}\mRightarrow{}  (X  x)))
    {}\mRightarrow{}  dense-in-interval((-\minfty{},  \minfty{});X)
    {}\mRightarrow{}  (\mforall{}Q:\{x:\mBbbR{}|  X  x\}    {}\mrightarrow{}  \mBbbB{}.  \mexists{}Q':\mBbbR{}  {}\mrightarrow{}  \mBbbB{}.  \mforall{}x:\{x:\mBbbR{}|  X  x\}  .  Q'  x  =  Q  x)
    {}\mRightarrow{}  Connected(\{x:\mBbbR{}|  X  x\}  ))
Date html generated:
2019_10_30-AM-07_35_42
Last ObjectModification:
2019_01_31-AM-10_42_28
Theory : reals
Home
Index