Nuprl Lemma : real-vec-sep-msep-prod-metric

n:ℕ. ∀a,c:ℝ^n.  (a ≠ ⇐⇒ c)


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b rn-prod-metric: rn-prod-metric(n) real-vec: ^n msep: y nat: all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  nat_plus: + sq_exists: x:A [B[x]] rless: x < y so_apply: x[s] false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) ge: i ≥  squash: T less_than: a < b so_lambda: λ2x.t[x] rev_implies:  Q prop: real-vec: ^n le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} nat: exists: x:A. B[x] implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] top: Top member: t ∈ T uall: [x:A]. B[x] msep: y
Lemmas referenced :  nat_plus_properties subtract-add-cancel zero-rleq-rabs rsum-of-nonneg-positive-iff real-vec-sep_wf real-vec-sep-iff istype-nat real-vec_wf istype-less_than istype-le int_term_value_subtract_lemma int_term_value_add_lemma int_formula_prop_less_lemma itermSubtract_wf itermAdd_wf intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties subtract_wf rsum_wf rsub_wf rabs_wf int-to-real_wf rless_wf int_seg_wf istype-void mdist-rn-prod-metric
Rules used in proof :  promote_hyp inhabitedIsType addEquality int_eqEquality dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination unionElimination dependent_functionElimination imageElimination dependent_set_memberEquality_alt lambdaEquality_alt because_Cache applyEquality productElimination hypothesisEquality rename setElimination natural_numberEquality universeIsType productIsType independent_pairFormation lambdaFormation_alt hypothesis voidElimination isect_memberEquality_alt thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,c:\mBbbR{}\^{}n.    (a  \mneq{}  c  \mLeftarrow{}{}\mRightarrow{}  a  \#  c)



Date html generated: 2019_11_06-PM-00_33_04
Last ObjectModification: 2019_11_05-AM-11_28_24

Theory : reals


Home Index