Nuprl Lemma : real-vec-sum-split
∀[j,n,m:ℤ]. ∀[k:ℕ]. ∀[x:{n..m + 1-} ⟶ ℝ^k].
  (req-vec(k;Σ{x[i] | n≤i≤m};Σ{x[i] | n≤i≤j} + Σ{x[i] | j + 1≤i≤m})) supposing ((j ≤ m) and (n ≤ j))
Proof
Definitions occuring in Statement : 
real-vec-sum: Σ{x[k] | n≤k≤m}
, 
real-vec-add: X + Y
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
req-vec: req-vec(n;x;y)
, 
all: ∀x:A. B[x]
, 
real-vec-sum: Σ{x[k] | n≤k≤m}
, 
real-vec-add: X + Y
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
int_seg_wf, 
req_witness, 
real-vec-sum_wf, 
subtype_rel_self, 
real_wf, 
real-vec-add_wf, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-less_than, 
decidable__le, 
real-vec_wf, 
istype-nat, 
rsum_wf, 
radd_wf, 
req_weakening, 
req_functionality, 
req_inversion, 
rsum-split
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalRule, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaEquality_alt, 
dependent_functionElimination, 
applyEquality, 
addEquality, 
functionEquality, 
productElimination, 
imageElimination, 
because_Cache, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
productIsType, 
closedConclusion, 
functionIsTypeImplies, 
inhabitedIsType, 
isectIsTypeImplies, 
functionIsType
Latex:
\mforall{}[j,n,m:\mBbbZ{}].  \mforall{}[k:\mBbbN{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}\^{}k].
    (req-vec(k;\mSigma{}\{x[i]  |  n\mleq{}i\mleq{}m\};\mSigma{}\{x[i]  |  n\mleq{}i\mleq{}j\}  +  \mSigma{}\{x[i]  |  j  +  1\mleq{}i\mleq{}m\}))  supposing  ((j  \mleq{}  m)  and  (n  \mleq{}  j))
Date html generated:
2019_10_30-AM-08_02_21
Last ObjectModification:
2019_09_17-PM-05_23_03
Theory : reals
Home
Index