Nuprl Lemma : real-vec-sum-split

[j,n,m:ℤ]. ∀[k:ℕ]. ∀[x:{n..m 1-} ⟶ ℝ^k].
  (req-vec(k;Σ{x[i] n≤i≤m};Σ{x[i] n≤i≤j} + Σ{x[i] 1≤i≤m})) supposing ((j ≤ m) and (n ≤ j))


Proof




Definitions occuring in Statement :  real-vec-sum: Σ{x[k] n≤k≤m} real-vec-add: Y req-vec: req-vec(n;x;y) real-vec: ^n int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a req-vec: req-vec(n;x;y) all: x:A. B[x] real-vec-sum: Σ{x[k] n≤k≤m} real-vec-add: Y nat: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  int_seg_wf req_witness real-vec-sum_wf subtype_rel_self real_wf real-vec-add_wf int_seg_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf istype-le istype-less_than decidable__le real-vec_wf istype-nat rsum_wf radd_wf req_weakening req_functionality req_inversion rsum-split
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalRule universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis lambdaEquality_alt dependent_functionElimination applyEquality addEquality functionEquality productElimination imageElimination because_Cache dependent_set_memberEquality_alt independent_pairFormation unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination productIsType closedConclusion functionIsTypeImplies inhabitedIsType isectIsTypeImplies functionIsType

Latex:
\mforall{}[j,n,m:\mBbbZ{}].  \mforall{}[k:\mBbbN{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}\^{}k].
    (req-vec(k;\mSigma{}\{x[i]  |  n\mleq{}i\mleq{}m\};\mSigma{}\{x[i]  |  n\mleq{}i\mleq{}j\}  +  \mSigma{}\{x[i]  |  j  +  1\mleq{}i\mleq{}m\}))  supposing  ((j  \mleq{}  m)  and  (n  \mleq{}  j))



Date html generated: 2019_10_30-AM-08_02_21
Last ObjectModification: 2019_09_17-PM-05_23_03

Theory : reals


Home Index