Nuprl Lemma : reg-seq-list-add_functionality_wrt_bdd-diff

L,L':(ℕ+ ⟶ ℤList.
  (((||L|| ||L'|| ∈ ℤ) ∧ (∀i:ℕ||L||. bdd-diff(L[i];L'[i])))  bdd-diff(reg-seq-list-add(L);reg-seq-list-add(L')))


Proof




Definitions occuring in Statement :  reg-seq-list-add: reg-seq-list-add(L) bdd-diff: bdd-diff(f;g) select: L[n] length: ||as|| list: List int_seg: {i..j-} nat_plus: + all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T squash: T uall: [x:A]. B[x] prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top so_apply: x[s] map: map(f;as) list_ind: list_ind nil: [] it: select: L[n] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] ge: i ≥  le: A ≤ B uiff: uiff(P;Q) subtract: m less_than: a < b less_than': less_than'(a;b) nat_plus: + cons: [a b] bdd-diff: bdd-diff(f;g) nat: rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  bdd-diff_wf squash_wf true_wf nat_plus_wf reg-seq-list-add-as-l_sum iff_weakening_equal equal_wf length_wf all_wf int_seg_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma intformeq_wf int_formula_prop_eq_lemma list_wf list_induction l_sum_wf map_wf equal-wf-base-T nil_wf length_of_nil_lemma stuck-spread base_wf map_nil_lemma l_sum_nil_lemma equal-wf-base length_of_cons_lemma map_cons_lemma l_sum_cons_lemma non_neg_length itermAdd_wf int_term_value_add_lemma cons_wf add-is-int-iff false_wf equal-wf-T-base decidable__equal_int add-member-int_seg2 subtract_wf itermSubtract_wf int_term_value_subtract_lemma lelt_wf select-cons-tl add-subtract-cancel add_nat_plus length_wf_nat less_than_wf nat_plus_properties nat_properties le_wf absval_wf trivial-bdd-diff nat_wf itermMinus_wf int_term_value_minus_lemma and_wf le_functionality le_weakening int-triangle-inequality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut applyEquality lambdaEquality imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry functionEquality intEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed universeEquality independent_isectElimination independent_functionElimination dependent_functionElimination productEquality because_Cache setElimination rename unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll functionExtensionality addEquality pointwiseFunctionality promote_hyp baseApply closedConclusion dependent_set_memberEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}L,L':(\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})  List.
    (((||L||  =  ||L'||)  \mwedge{}  (\mforall{}i:\mBbbN{}||L||.  bdd-diff(L[i];L'[i])))
    {}\mRightarrow{}  bdd-diff(reg-seq-list-add(L);reg-seq-list-add(L')))



Date html generated: 2017_10_02-PM-07_14_01
Last ObjectModification: 2017_07_28-AM-07_20_09

Theory : reals


Home Index