Nuprl Lemma : seq-min-upper-le

[k:ℕ]. ∀[n:ℕ+]. ∀[f:ℕ+ ⟶ ℤ].  (seq-min-upper(k;n;f) ≤ n)


Proof




Definitions occuring in Statement :  seq-min-upper: seq-min-upper(k;n;f) nat_plus: + nat: uall: [x:A]. B[x] le: A ≤ B function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T seq-min-upper: seq-min-upper(k;n;f) all: x:A. B[x] top: Top nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: nat: implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  le: A ≤ B false: False not: ¬A bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] nequal: a ≠ b ∈  iff: ⇐⇒ Q rev_implies:  Q subtract: m
Lemmas referenced :  primrec1_lemma le_int_wf nat_plus_wf less_than_wf bool_wf eqtt_to_assert assert_of_le_int false_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf nat_plus_properties seq-min-upper_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf primrec-wf-nat-plus less_than'_wf nat_wf primrec-unroll squash_wf true_wf eq_int_eq_false intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma equal-wf-base int_subtype_base bfalse_wf iff_weakening_equal subtract_wf add-subtract-cancel decidable__lt not-lt-2 less-iff-le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates minus-minus add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_weakening2 le_reflexive add-is-int-iff and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination addEquality multiplyEquality natural_numberEquality applyEquality functionExtensionality hypothesisEquality dependent_set_memberEquality independent_pairFormation imageMemberEquality baseClosed setElimination rename because_Cache lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity independent_functionElimination approximateComputation lambdaEquality int_eqEquality intEquality independent_pairEquality axiomEquality functionEquality imageElimination universeEquality baseApply closedConclusion minusEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    (seq-min-upper(k;n;f)  \mleq{}  n)



Date html generated: 2017_10_03-AM-08_43_31
Last ObjectModification: 2017_09_09-AM-10_43_35

Theory : reals


Home Index