Nuprl Lemma : fun-converges-to-derivative

I:Interval
  (iproper(I)
   (∀f,f':ℕ ⟶ I ⟶ℝ. ∀F,G:I ⟶ℝ.
        ((∀n:ℕ. ∀x,y:{a:ℝa ∈ I} .  ((x y)  (f'[n;x] f'[n;y])))
         lim n→∞.f[n;x] = λy.F[y] for x ∈ I
         lim n→∞.f'[n;x] = λy.G[y] for x ∈ I
         (∀n:ℕd(f[n;x])/dx = λx.f'[n;x] on I)
         d(F[x])/dx = λx.G[x] on I)))


Proof




Definitions occuring in Statement :  derivative: d(f[x])/dx = λz.g[z] on I fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I rfun: I ⟶ℝ i-member: r ∈ I iproper: iproper(I) interval: Interval req: y real: nat: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T i-nonvoid: i-nonvoid(I) exists: x:A. B[x] uall: [x:A]. B[x] so_lambda: λ2x.t[x] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s1;s2] subtype_rel: A ⊆B prop: so_apply: x[s] so_lambda: λ2y.t[x; y] guard: {T} sq_stable: SqStable(P) squash: T uimplies: supposing a rfun-eq: rfun-eq(I;f;g) r-ap: f(x) integrate: a_∫- f[t] dt uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top pi1: fst(t)
Lemmas referenced :  iproper-nonvoid istype-nat derivative_wf subtype_rel_self real_wf i-member_wf fun-converges-to_wf req_wf rfun_wf iproper_wf interval_wf fun-converges-to-pointwise sq_stable__i-member unique-limit req_inversion req_weakening converges-to_functionality fun-converges-to-integral derivative-of-integral fun-converges-to-rsub integrate_wf antiderivatives-differ-by-constant rsub_wf radd_wf itermSubtract_wf itermAdd_wf itermVar_wf req-iff-rsub-is-0 req_functionality rsub_functionality real_polynomial_null int-to-real_wf istype-int real_term_value_sub_lemma istype-void real_term_value_add_lemma real_term_value_var_lemma real_term_value_const_lemma nat_wf fun-converges-to_functionality req-implies-req derivative-add derivative-const radd-zero derivative_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis productElimination sqequalRule functionIsType universeIsType isectElimination lambdaEquality_alt applyEquality functionEquality setEquality setIsType because_Cache setElimination rename inhabitedIsType imageMemberEquality baseClosed imageElimination independent_isectElimination dependent_set_memberEquality_alt equalityTransitivity equalitySymmetry applyLambdaEquality dependent_pairFormation_alt natural_numberEquality approximateComputation int_eqEquality isect_memberEquality_alt voidElimination promote_hyp functionExtensionality equalityIsType1

Latex:
\mforall{}I:Interval
    (iproper(I)
    {}\mRightarrow{}  (\mforall{}f,f':\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.  \mforall{}F,G:I  {}\mrightarrow{}\mBbbR{}.
                ((\mforall{}n:\mBbbN{}.  \mforall{}x,y:\{a:\mBbbR{}|  a  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f'[n;x]  =  f'[n;y])))
                {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.f[n;x]  =  \mlambda{}y.F[y]  for  x  \mmember{}  I
                {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.f'[n;x]  =  \mlambda{}y.G[y]  for  x  \mmember{}  I
                {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  d(f[n;x])/dx  =  \mlambda{}x.f'[n;x]  on  I)
                {}\mRightarrow{}  d(F[x])/dx  =  \mlambda{}x.G[x]  on  I)))



Date html generated: 2019_10_30-AM-11_39_43
Last ObjectModification: 2018_11_10-PM-00_54_27

Theory : reals_2


Home Index