Nuprl Lemma : fun-converges-to-derivative
∀I:Interval
  (iproper(I)
  
⇒ (∀f,f':ℕ ⟶ I ⟶ℝ. ∀F,G:I ⟶ℝ.
        ((∀n:ℕ. ∀x,y:{a:ℝ| a ∈ I} .  ((x = y) 
⇒ (f'[n;x] = f'[n;y])))
        
⇒ lim n→∞.f[n;x] = λy.F[y] for x ∈ I
        
⇒ lim n→∞.f'[n;x] = λy.G[y] for x ∈ I
        
⇒ (∀n:ℕ. d(f[n;x])/dx = λx.f'[n;x] on I)
        
⇒ d(F[x])/dx = λx.G[x] on I)))
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I
, 
fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I
, 
rfun: I ⟶ℝ
, 
i-member: r ∈ I
, 
iproper: iproper(I)
, 
interval: Interval
, 
req: x = y
, 
real: ℝ
, 
nat: ℕ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
i-nonvoid: i-nonvoid(I)
, 
exists: ∃x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
uimplies: b supposing a
, 
rfun-eq: rfun-eq(I;f;g)
, 
r-ap: f(x)
, 
integrate: a_∫- f[t] dt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
, 
pi1: fst(t)
Lemmas referenced : 
iproper-nonvoid, 
istype-nat, 
derivative_wf, 
subtype_rel_self, 
real_wf, 
i-member_wf, 
fun-converges-to_wf, 
req_wf, 
rfun_wf, 
iproper_wf, 
interval_wf, 
fun-converges-to-pointwise, 
sq_stable__i-member, 
unique-limit, 
req_inversion, 
req_weakening, 
converges-to_functionality, 
fun-converges-to-integral, 
derivative-of-integral, 
fun-converges-to-rsub, 
integrate_wf, 
antiderivatives-differ-by-constant, 
rsub_wf, 
radd_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
req_functionality, 
rsub_functionality, 
real_polynomial_null, 
int-to-real_wf, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
nat_wf, 
fun-converges-to_functionality, 
req-implies-req, 
derivative-add, 
derivative-const, 
radd-zero, 
derivative_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
sqequalRule, 
functionIsType, 
universeIsType, 
isectElimination, 
lambdaEquality_alt, 
applyEquality, 
functionEquality, 
setEquality, 
setIsType, 
because_Cache, 
setElimination, 
rename, 
inhabitedIsType, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_pairFormation_alt, 
natural_numberEquality, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
promote_hyp, 
functionExtensionality, 
equalityIsType1
Latex:
\mforall{}I:Interval
    (iproper(I)
    {}\mRightarrow{}  (\mforall{}f,f':\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.  \mforall{}F,G:I  {}\mrightarrow{}\mBbbR{}.
                ((\mforall{}n:\mBbbN{}.  \mforall{}x,y:\{a:\mBbbR{}|  a  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f'[n;x]  =  f'[n;y])))
                {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.f[n;x]  =  \mlambda{}y.F[y]  for  x  \mmember{}  I
                {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.f'[n;x]  =  \mlambda{}y.G[y]  for  x  \mmember{}  I
                {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  d(f[n;x])/dx  =  \mlambda{}x.f'[n;x]  on  I)
                {}\mRightarrow{}  d(F[x])/dx  =  \mlambda{}x.G[x]  on  I)))
Date html generated:
2019_10_30-AM-11_39_43
Last ObjectModification:
2018_11_10-PM-00_54_27
Theory : reals_2
Home
Index