Nuprl Lemma : coPathAgree_refl

[A:𝕌']. ∀[B:A ⟶ Type].  ∀n:ℕ. ∀[w:coW(A;a.B[a])]. ∀p:coPath(a.B[a];w;n). coPathAgree(a.B[a];n;w;p;p)


Proof




Definitions occuring in Statement :  coPathAgree: coPathAgree(a.B[a];n;w;p;q) coPath: coPath(a.B[a];w;n) coW: coW(A;a.B[a]) nat: uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] coPathAgree: coPathAgree(a.B[a];n;w;p;q) eq_int: (i =z j) member: t ∈ T implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  true: True bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False subtract: m nequal: a ≠ b ∈  not: ¬A so_lambda: λ2x.t[x] so_apply: x[s] nat: le: A ≤ B less_than': less_than'(a;b) subtype_rel: A ⊆B decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q top: Top coPath: coPath(a.B[a];w;n) cand: c∧ B
Lemmas referenced :  btrue_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert eq_int_wf equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int coPath_wf false_wf le_wf coW_wf le_weakening2 uall_wf all_wf subtract_wf decidable__le not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel coPathAgree_wf set_wf less_than_wf primrec-wf2 nat_wf int_subtype_base assert_wf bnot_wf not_wf equal-wf-base coW-item_wf bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin sqequalRule introduction extract_by_obid hypothesis sqequalHypSubstitution unionElimination equalityElimination isectElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache natural_numberEquality dependent_pairFormation hypothesisEquality promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination lambdaEquality applyEquality functionExtensionality dependent_set_memberEquality independent_pairFormation rename setElimination universeEquality addEquality isect_memberEquality voidEquality intEquality minusEquality functionEquality baseClosed impliesFunctionality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}n:\mBbbN{}.  \mforall{}[w:coW(A;a.B[a])].  \mforall{}p:coPath(a.B[a];w;n).  coPathAgree(a.B[a];n;w;p;p)



Date html generated: 2018_07_25-PM-01_38_09
Last ObjectModification: 2018_06_08-PM-06_52_16

Theory : co-recursion


Home Index