Nuprl Lemma : copath-at-extend

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[p:copath(a.B[a];w)]. ∀[t:Top].
  (copath-at(w;copath-extend(p;t)) coW-item(copath-at(w;p);t))


Proof




Definitions occuring in Statement :  copath-extend: copath-extend(q;t) copath-at: copath-at(w;p) copath: copath(a.B[a];w) coW-item: coW-item(w;b) coW: coW(A;a.B[a]) uall: [x:A]. B[x] top: Top so_apply: x[s] function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  it: unit: Unit bool: 𝔹 true: True less_than': less_than'(a;b) le: A ≤ B top: Top subtype_rel: A ⊆B uiff: uiff(P;Q) rev_implies:  Q not: ¬A and: P ∧ Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) bfalse: ff btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) coPath-extend: coPath-extend(n;p;t) coPath-at: coPath-at(n;w;p) coPath: coPath(a.B[a];w;n) so_apply: x[s] so_lambda: λ2x.t[x] all: x:A. B[x] prop: uimplies: supposing a guard: {T} ge: i ≥  false: False implies:  Q nat: copath-extend: copath-extend(q;t) copath-at: copath-at(w;p) copath: copath(a.B[a];w) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  not-le-2 coW-dom_wf general_arith_equation1 coW-item_wf equal_wf assert_of_bnot eqff_to_assert iff_weakening_uiff iff_transitivity assert_of_eq_int eqtt_to_assert uiff_transitivity le_antisymmetry_iff not_wf bnot_wf le_weakening assert_wf int_subtype_base equal-wf-base bool_wf eq_int_wf coW_wf copath_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-ge-2 false_wf subtract_wf decidable__le le_wf coPath_wf top_wf less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties
Rules used in proof :  productEquality impliesFunctionality equalityElimination equalitySymmetry equalityTransitivity baseClosed closedConclusion baseApply universeEquality functionEquality instantiate minusEquality intEquality voidEquality isect_memberEquality addEquality independent_pairFormation unionElimination dependent_set_memberEquality because_Cache functionExtensionality applyEquality cumulativity sqequalAxiom dependent_functionElimination lambdaEquality voidElimination independent_functionElimination independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination rename setElimination hypothesis hypothesisEquality isectElimination extract_by_obid sqequalRule thin productElimination sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[p:copath(a.B[a];w)].  \mforall{}[t:Top].
    (copath-at(w;copath-extend(p;t))  \msim{}  coW-item(copath-at(w;p);t))



Date html generated: 2018_07_29-AM-09_21_35
Last ObjectModification: 2018_07_26-PM-09_16_00

Theory : co-recursion


Home Index