Nuprl Lemma : gamma-neighbourhood-prop2

beta:ℕ ⟶ ℕ. ∀n0:finite-nat-seq(). ∀x:ℕ.
  ((¬((beta x) 0 ∈ ℤ))
   (∃x1:ℕ1
       ((¬((beta x1) 0 ∈ ℤ))
       ∧ (∀y:ℕx1. ((beta y) 0 ∈ ℤ))
       ∧ ((gamma-neighbourhood(beta;n0) n0**λx.x1^(1)) (inl 1) ∈ (ℕ?))
       ∧ ((gamma-neighbourhood(beta;n0) n0**λx.(x1 1)^(1)) (inl 0) ∈ (ℕ?)))))


Proof




Definitions occuring in Statement :  gamma-neighbourhood: gamma-neighbourhood(beta;n0) append-finite-nat-seq: f**g mk-finite-nat-seq: f^(n) finite-nat-seq: finite-nat-seq() int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q unit: Unit apply: a lambda: λx.A[x] function: x:A ⟶ B[x] inl: inl x union: left right add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A member: t ∈ T subtype_rel: A ⊆B nat: false: False so_apply: x[s] so_lambda: λ2x.t[x] less_than': less_than'(a;b) le: A ≤ B prop: top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a uall: [x:A]. B[x] or: P ∨ Q decidable: Dec(P) and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} exists: x:A. B[x] sq_type: SQType(T) cand: c∧ B true: True squash: T less_than: a < b guard: {T} ge: i ≥  gamma-neighbourhood: gamma-neighbourhood(beta;n0) exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b iff: ⇐⇒ Q pi2: snd(t) pi1: fst(t) append-finite-nat-seq: f**g mk-finite-nat-seq: f^(n) finite-nat-seq: finite-nat-seq() rev_implies:  Q
Lemmas referenced :  istype-int istype-nat istype-void finite-nat-seq_wf int_subtype_base le_wf set_subtype_base istype-false int_seg_subtype_nat istype-less_than istype-le int_formula_prop_wf int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma itermConstant_wf itermAdd_wf itermVar_wf intformless_wf intformnot_wf full-omega-unsat decidable__lt all_wf equal-wf-base not_wf exists_wf primrec-wf2 subtract_wf int_seg_wf subtype_base_sq int_formula_prop_le_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformle_wf intformeq_wf intformand_wf decidable__equal_int int_seg_properties decidable__not dec-exists-int-seg subtract-add-cancel unit_wf2 gamma-neighbourhood_wf append-finite-nat-seq_wf mk-finite-nat-seq_wf decidable__le union_subtype_base nat_wf unit_subtype_base nat_properties init-seg-nat-seq_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot assert-init-seg-nat-seq2 extend-seq1-all-dec subtype_rel_self decidable_wf assert_wf istype-top less_than_anti-reflexive less_than_wf lelt_wf istype-assert assert-init-seg-nat-seq equal_wf squash_wf true_wf istype-universe append-empty-nat-seq iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  sqequalRule Error :functionIsType,  Error :equalityIstype,  cut introduction extract_by_obid hypothesis applyEquality hypothesisEquality thin Error :lambdaEquality_alt,  sqequalHypSubstitution setElimination rename natural_numberEquality Error :universeIsType,  because_Cache Error :inhabitedIsType,  equalitySymmetry sqequalBase baseClosed closedConclusion intEquality Error :productIsType,  voidElimination Error :isect_memberEquality_alt,  int_eqEquality independent_functionElimination approximateComputation independent_isectElimination isectElimination unionElimination addEquality dependent_functionElimination independent_pairFormation Error :dependent_set_memberEquality_alt,  Error :dependent_pairFormation_alt,  productEquality functionEquality instantiate Error :setIsType,  cumulativity imageMemberEquality equalityTransitivity productElimination Error :unionIsType,  equalityElimination promote_hyp Error :inlEquality_alt,  hyp_replacement applyLambdaEquality lessCases Error :isect_memberFormation_alt,  axiomSqEquality Error :isectIsTypeImplies,  imageElimination baseApply universeEquality

Latex:
\mforall{}beta:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}n0:finite-nat-seq().  \mforall{}x:\mBbbN{}.
    ((\mneg{}((beta  x)  =  0))
    {}\mRightarrow{}  (\mexists{}x1:\mBbbN{}x  +  1
              ((\mneg{}((beta  x1)  =  0))
              \mwedge{}  (\mforall{}y:\mBbbN{}x1.  ((beta  y)  =  0))
              \mwedge{}  ((gamma-neighbourhood(beta;n0)  n0**\mlambda{}x.x1\^{}(1))  =  (inl  1))
              \mwedge{}  ((gamma-neighbourhood(beta;n0)  n0**\mlambda{}x.(x1  +  1)\^{}(1))  =  (inl  0)))))



Date html generated: 2019_06_20-PM-03_04_05
Last ObjectModification: 2018_12_06-PM-11_58_06

Theory : continuity


Home Index