Nuprl Lemma : strong-continuity-test-prop2

[T:Type]
  ∀M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ?). ∀n:ℕ. ∀f:ℕn ⟶ T. ∀b:ℕ?.
    ((↑isl(b))
     (↑isr(strong-continuity-test(M;n;f;b)))
     (∃m:ℕ(m < n ∧ (↑isl(strong-continuity-test(M;m;f;M f))))))


Proof




Definitions occuring in Statement :  strong-continuity-test: strong-continuity-test(M;n;f;b) int_seg: {i..j-} nat: assert: b isr: isr(x) isl: isl(x) less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] union: left right natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] ge: i ≥  eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt assert: b bfalse: ff sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q isr: isr(x) cand: c∧ B
Lemmas referenced :  assert_wf isr_wf nat_wf unit_wf2 strong-continuity-test_wf int_seg_wf isl_wf false_wf le_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf all_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma exists_wf less_than_wf subtype_rel_dep_function int_seg_subtype nat_properties set_wf primrec-wf2 strong-continuity-test-unroll isr-not-isl subtype_rel_union top_wf eq_int_wf bnot_wf not_wf equal-wf-base int_subtype_base bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot less_than_transitivity1 le_weakening less_than_irreflexivity decidable__assert decidable__lt not-isl-assert-isr
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis cumulativity hypothesisEquality functionExtensionality applyEquality natural_numberEquality setElimination rename unionEquality functionEquality universeEquality because_Cache dependent_set_memberEquality sqequalRule independent_pairFormation dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll productEquality independent_functionElimination equalityTransitivity equalitySymmetry baseClosed instantiate productElimination impliesFunctionality

Latex:
\mforall{}[T:Type]
    \mforall{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mBbbN{}?).  \mforall{}n:\mBbbN{}.  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  T.  \mforall{}b:\mBbbN{}?.
        ((\muparrow{}isl(b))
        {}\mRightarrow{}  (\muparrow{}isr(strong-continuity-test(M;n;f;b)))
        {}\mRightarrow{}  (\mexists{}m:\mBbbN{}.  (m  <  n  \mwedge{}  (\muparrow{}isl(strong-continuity-test(M;m;f;M  m  f))))))



Date html generated: 2016_12_12-AM-09_22_17
Last ObjectModification: 2016_11_22-AM-11_48_24

Theory : continuity


Home Index