Nuprl Lemma : deq-member-length-filter

[A:Type]. ∀[eq:EqDecider(A)]. ∀[L:A List]. ∀[x:A].  (x ∈b 0 <||filter(λy.(eq x);L)||)


Proof




Definitions occuring in Statement :  length: ||as|| deq-member: x ∈b L filter: filter(P;l) list: List deq: EqDecider(T) lt_int: i <j uall: [x:A]. B[x] apply: a lambda: λx.A[x] natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q lt_int: i <j cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) deq: EqDecider(T) bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) eqof: eqof(d) ifthenelse: if then else fi  iff: ⇐⇒ Q nat_plus: + true: True rev_implies:  Q assert: b bfalse: ff bnot: ¬bb bor: p ∨bq
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases deq_member_nil_lemma filter_nil_lemma length_of_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int deq_member_cons_lemma filter_cons_lemma bool_wf eqtt_to_assert safe-assert-deq testxxx_lemma length_of_cons_lemma bool_subtype_base iff_imp_equal_bool btrue_wf lt_int_wf length_wf filter_wf5 l_member_wf add_nat_plus length_wf_nat eqof_wf nat_plus_wf nat_plus_properties decidable__lt add-is-int-iff false_wf true_wf assert_of_lt_int assert_wf iff_wf eqff_to_assert bool_cases_sqequal assert-bnot list_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom cumulativity applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination equalityElimination setEquality imageMemberEquality pointwiseFunctionality baseApply closedConclusion addLevel impliesFunctionality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[L:A  List].  \mforall{}[x:A].    (x  \mmember{}\msubb{}  L  \msim{}  0  <z  ||filter(\mlambda{}y.(eq  y  x);L)||)



Date html generated: 2017_09_29-PM-06_04_23
Last ObjectModification: 2017_07_26-PM-02_53_03

Theory : decidable!equality


Home Index