Nuprl Lemma : member-count-repeats2
∀[T:Type]
  ∀eq:EqDecider(T). ∀L:T List. ∀i:ℕ||count-repeats(L,eq)||.
    let x,n = count-repeats(L,eq)[i] 
    in n = ||filter(λy.(eq y x);L)|| ∈ ℤ
Proof
Definitions occuring in Statement : 
count-repeats: count-repeats(L,eq), 
select: L[n], 
length: ||as||, 
filter: filter(P;l), 
list: T List, 
deq: EqDecider(T), 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
apply: f a, 
lambda: λx.A[x], 
spread: spread def, 
natural_number: $n, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
int_seg: {i..j-}, 
uimplies: b supposing a, 
guard: {T}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
less_than: a < b, 
squash: ↓T, 
sq_type: SQType(T), 
uiff: uiff(P;Q), 
iff: P ⇐⇒ Q, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
rev_implies: P ⇐ Q, 
bfalse: ff, 
l_member: (x ∈ l), 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
cand: A c∧ B, 
nat_plus: ℕ+, 
nat: ℕ, 
ge: i ≥ j , 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
outl: outl(x), 
deq: EqDecider(T), 
isl: isl(x), 
assert: ↑b, 
true: True, 
pi1: fst(t)
Lemmas referenced : 
select_wf, 
nat_plus_wf, 
count-repeats_wf, 
int_seg_properties, 
length_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_wf, 
list_wf, 
deq_wf, 
istype-universe, 
apply-alist-count-repeats, 
deq-member_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
l_member_wf, 
istype-assert, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert-deq-member, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
apply-alist-no_repeats, 
no_repeats-count-repeats1, 
int_seg_subtype_nat, 
istype-false, 
nat_plus_properties, 
istype-less_than, 
nat_properties, 
equal-wf-base-T, 
unit_wf2, 
union_subtype_base, 
set_subtype_base, 
less_than_wf, 
int_subtype_base, 
unit_subtype_base, 
length_wf_nat, 
filter_wf5, 
outl_wf, 
equal_wf, 
btrue_wf, 
bfalse_wf, 
nat_plus_subtype_nat, 
subtype_rel_wf, 
nat_wf, 
member-count-repeats1, 
map-length, 
map_wf, 
istype-nat, 
squash_wf, 
true_wf, 
map_select, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
setElimination, 
rename, 
independent_isectElimination, 
natural_numberEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
imageElimination, 
Error :inhabitedIsType, 
Error :equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeEquality, 
Error :functionIsType, 
cumulativity, 
applyEquality, 
Error :productIsType, 
hyp_replacement, 
applyLambdaEquality, 
unionEquality, 
intEquality, 
closedConclusion, 
Error :setIsType, 
Error :dependent_set_memberEquality_alt, 
baseApply, 
baseClosed, 
sqequalBase, 
promote_hyp, 
imageMemberEquality
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}L:T  List.  \mforall{}i:\mBbbN{}||count-repeats(L,eq)||.
        let  x,n  =  count-repeats(L,eq)[i] 
        in  n  =  ||filter(\mlambda{}y.(eq  y  x);L)||
Date html generated:
2019_06_20-PM-01_54_50
Last ObjectModification:
2018_11_28-PM-05_14_38
Theory : decidable!equality
Home
Index