Nuprl Lemma : almost_full0

[T:Type]. ∀[R:0-aryRel(T)].  ((R i.⊥))  almost_full(T;0;R))


Proof




Definitions occuring in Statement :  almost_full: almost_full(T;n;R) nary-rel: n-aryRel(T) bottom: uall: [x:A]. B[x] implies:  Q apply: a lambda: λx.A[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q almost_full: almost_full(T;n;R) all: x:A. B[x] exists: x:A. B[x] member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: cand: c∧ B nat: decidable: Dec(P) or: P ∨ Q guard: {T} subtract: m subtype_rel: A ⊆B nary-rel: n-aryRel(T) compose: g
Lemmas referenced :  int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf implies-strictly-increasing-seq decidable__le intformnot_wf int_formula_prop_not_lemma istype-le int_seg_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma strictly-increasing-seq_wf istype-nat compose_wf nat_wf nary-rel_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality hypothesis setElimination rename productElimination independent_isectElimination approximateComputation independent_functionElimination int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  because_Cache Error :dependent_set_memberEquality_alt,  unionElimination Error :productIsType,  functionExtensionality applyEquality Error :functionIsType,  instantiate hyp_replacement equalitySymmetry Error :functionExtensionality_alt

Latex:
\mforall{}[T:Type].  \mforall{}[R:0-aryRel(T)].    ((R  (\mlambda{}i.\mbot{}))  {}\mRightarrow{}  almost\_full(T;0;R))



Date html generated: 2019_06_20-PM-02_45_31
Last ObjectModification: 2018_12_06-PM-11_34_32

Theory : fan-theorem


Home Index