Nuprl Lemma : almost_full0
∀[T:Type]. ∀[R:0-aryRel(T)].  ((R (λi.⊥)) 
⇒ almost_full(T;0;R))
Proof
Definitions occuring in Statement : 
almost_full: almost_full(T;n;R)
, 
nary-rel: n-aryRel(T)
, 
bottom: ⊥
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
almost_full: almost_full(T;n;R)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
cand: A c∧ B
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
guard: {T}
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
nary-rel: n-aryRel(T)
, 
compose: f o g
Lemmas referenced : 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
implies-strictly-increasing-seq, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-le, 
int_seg_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
strictly-increasing-seq_wf, 
istype-nat, 
compose_wf, 
nat_wf, 
nary-rel_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
productElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
because_Cache, 
Error :dependent_set_memberEquality_alt, 
unionElimination, 
Error :productIsType, 
functionExtensionality, 
applyEquality, 
Error :functionIsType, 
instantiate, 
hyp_replacement, 
equalitySymmetry, 
Error :functionExtensionality_alt
Latex:
\mforall{}[T:Type].  \mforall{}[R:0-aryRel(T)].    ((R  (\mlambda{}i.\mbot{}))  {}\mRightarrow{}  almost\_full(T;0;R))
Date html generated:
2019_06_20-PM-02_45_31
Last ObjectModification:
2018_12_06-PM-11_34_32
Theory : fan-theorem
Home
Index