Nuprl Lemma : unsquashed-weak-continuity-base-false
¬base-CP()
Proof
Definitions occuring in Statement : 
base-CP: base-CP()
, 
not: ¬A
Definitions unfolded in proof : 
not: ¬A
, 
implies: P 
⇒ Q
, 
base-CP: base-CP()
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
pi1: fst(t)
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
isect2: T1 ⋂ T2
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
ge: i ≥ j 
, 
guard: {T}
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
lelt: i ≤ j < k
, 
true: True
, 
assert: ↑b
, 
bnot: ¬bb
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
base-CP_wf, 
isect2_wf, 
nat_wf, 
base_wf, 
int_seg_wf, 
istype-nat, 
set_subtype_base, 
lelt_wf, 
istype-int, 
int_subtype_base, 
isect2_subtype_rel2, 
false_wf, 
bool_wf, 
equal-wf-base, 
int_seg_subtype_nat, 
isect2_decomp, 
equal_wf, 
all_wf, 
le_wf, 
isect2_subtype_rel, 
istype-false, 
istype-le, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_properties, 
subtype_base_sq, 
decidable__equal_int, 
int_seg_properties, 
less_than_wf, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
lt_int_wf, 
not_wf, 
bnot_wf, 
assert_wf, 
bool_cases, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
ifthenelse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
promote_hyp, 
thin, 
productElimination, 
Error :universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
functionEquality, 
because_Cache, 
sqequalRule, 
Error :functionIsType, 
natural_numberEquality, 
applyEquality, 
hypothesisEquality, 
Error :lambdaEquality_alt, 
setElimination, 
rename, 
Error :equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
intEquality, 
independent_isectElimination, 
Error :dependent_pairFormation_alt, 
functionExtensionality, 
Error :inhabitedIsType, 
Error :equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
pointwiseFunctionality, 
productEquality, 
lambdaFormation, 
independent_pairFormation, 
dependent_set_memberEquality, 
equalityElimination, 
unionElimination, 
isect_memberEquality, 
lambdaEquality, 
dependent_pairFormation, 
Error :dependent_set_memberEquality_alt, 
Error :productIsType, 
computeAll, 
voidEquality, 
voidElimination, 
int_eqEquality, 
cumulativity, 
instantiate, 
applyLambdaEquality, 
impliesFunctionality
Latex:
\mneg{}base-CP()
Date html generated:
2019_06_20-PM-02_49_30
Last ObjectModification:
2018_10_29-PM-00_52_31
Theory : fan-theorem
Home
Index