Nuprl Lemma : implies-member-fset-minimals
∀[T:Type]
  ∀eq:EqDecider(T). ∀s:fset(fset(T)). ∀a:fset(T).
    (a ∈ s
    ⇒ (¬(∃z:fset(T). (z ∈ fset-minimals(x,y.f-proper-subset-dec(eq;x;y); s) ∧ z ⊆≠ a)))
    ⇒ a ∈ fset-minimals(x,y.f-proper-subset-dec(eq;x;y); s))
Proof
Definitions occuring in Statement : 
fset-minimals: fset-minimals(x,y.less[x; y]; s), 
f-proper-subset-dec: f-proper-subset-dec(eq;xs;ys), 
f-proper-subset: xs ⊆≠ ys, 
deq-fset: deq-fset(eq), 
fset-member: a ∈ s, 
fset: fset(T), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
guard: {T}, 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
uiff: uiff(P;Q), 
cand: A c∧ B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
squash: ↓T
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
fset-member_witness, 
deq-fset_wf, 
fset-minimals_wf, 
fset_wf, 
f-proper-subset-dec_wf, 
not_wf, 
exists_wf, 
fset-member_wf, 
f-proper-subset_wf, 
fset-size_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
add_nat_wf, 
false_wf, 
le_wf, 
add-is-int-iff, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
equal_wf, 
decidable__lt, 
deq_wf, 
member-fset-minimals, 
fset-all-iff, 
bnot_wf, 
iff_transitivity, 
assert_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
assert-f-proper-subset-dec, 
assert_witness, 
fset-size-proper-subset, 
f-proper-subset_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
because_Cache, 
cumulativity, 
productEquality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
unionElimination, 
dependent_set_memberEquality, 
addEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
productElimination, 
universeEquality, 
impliesFunctionality, 
imageElimination
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}s:fset(fset(T)).  \mforall{}a:fset(T).
        (a  \mmember{}  s
        {}\mRightarrow{}  (\mneg{}(\mexists{}z:fset(T).  (z  \mmember{}  fset-minimals(x,y.f-proper-subset-dec(eq;x;y);  s)  \mwedge{}  z  \msubseteq{}\mneq{}  a)))
        {}\mRightarrow{}  a  \mmember{}  fset-minimals(x,y.f-proper-subset-dec(eq;x;y);  s))
Date html generated:
2017_04_17-AM-09_23_30
Last ObjectModification:
2017_02_27-PM-05_25_29
Theory : finite!sets
Home
Index