Nuprl Lemma : length-firstn-le

[as:Top List]. ∀[n:ℕ].  (||firstn(n;as)|| ≤ n)


Proof




Definitions occuring in Statement :  firstn: firstn(n;as) length: ||as|| list: List nat: uall: [x:A]. B[x] top: Top le: A ≤ B
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False and: P ∧ Q ge: i ≥  le: A ≤ B cand: c∧ B less_than: a < b squash: T guard: {T} uimplies: supposing a prop: or: P ∨ Q cons: [a b] less_than': less_than'(a;b) not: ¬A colength: colength(L) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sq_stable: SqStable(P) decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m true: True subtype_rel: A ⊆B firstn: firstn(n;as) bool: 𝔹 unit: Unit btrue: tt ifthenelse: if then else fi  so_lambda: so_lambda3 so_apply: x[s1;s2;s3] bfalse: ff rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf istype-less_than le_witness_for_triv top_wf list-cases product_subtype_list colength-cons-not-zero istype-nat colength_wf_list istype-void istype-le list_wf subtract-1-ge-0 subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base spread_cons_lemma sq_stable__le decidable__equal_int subtract_wf istype-false not-equal-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top le_antisymmetry_iff add_functionality_wrt_le add-commutes zero-add le-add-cancel minus-minus le_weakening2 lt_int_wf equal-wf-base bool_wf istype-int assert_wf less_than_wf le_int_wf bnot_wf length_wf firstn_wf decidable__le not-le-2 less-iff-le add-zero add-mul-special zero-mul uiff_transitivity eqtt_to_assert assert_of_lt_int list_ind_nil_lemma length_of_nil_lemma eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int list_ind_cons_lemma length_of_cons_lemma le_functionality le_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination independent_pairFormation productElimination imageElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination universeIsType sqequalRule lambdaEquality_alt dependent_functionElimination isect_memberEquality_alt equalityTransitivity equalitySymmetry isectIsTypeImplies inhabitedIsType functionIsTypeImplies unionElimination because_Cache promote_hyp hypothesis_subsumption equalityIstype dependent_set_memberEquality_alt instantiate cumulativity intEquality Error :memTop,  imageMemberEquality baseClosed applyLambdaEquality addEquality minusEquality baseApply closedConclusion applyEquality sqequalBase multiplyEquality equalityElimination

Latex:
\mforall{}[as:Top  List].  \mforall{}[n:\mBbbN{}].    (||firstn(n;as)||  \mleq{}  n)



Date html generated: 2020_05_19-PM-09_37_27
Last ObjectModification: 2020_03_04-PM-01_33_55

Theory : list_0


Home Index