Nuprl Lemma : add-polynom-length

[n:ℕ]. ∀[p,q:polyform(n) List].  (||add-polynom(n 1;ff;p;q)|| imax(||p||;||q||) ∈ ℤ)


Proof




Definitions occuring in Statement :  add-polynom: add-polynom(n;rmz;p;q) polyform: polyform(n) length: ||as|| list: List imax: imax(a;b) nat: bfalse: ff uall: [x:A]. B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  subtract: m polyform: polyform(n) less_than': less_than'(a;b) less_than: a < b so_apply: x[s] so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] colength: colength(L) cons: [a b] decidable: Dec(P) le: A ≤ B nequal: a ≠ b ∈  rev_uimplies: rev_uimplies(P;Q) rev_implies:  Q iff: ⇐⇒ Q true: True squash: T has-valueall: has-valueall(a) has-value: (a)↓ list_ind: list_ind length: ||as|| nil: [] evalall: evalall(t) callbyvalueall: callbyvalueall assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 add-polynom: add-polynom(n;rmz;p;q) or: P ∨ Q guard: {T} subtype_rel: A ⊆B prop: and: P ∧ Q top: Top not: ¬A exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a ge: i ≥  false: False implies:  Q nat: all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  btrue_wf false_wf add-is-int-iff le_int_wf ifthenelse_wf add_functionality_wrt_eq imax_wf bfalse_wf zero-add add-commutes add-swap add-associates add-subtract-cancel subtype_rel-equal add-polynom_wf1 top_wf decidable__lt int-value-type value-type-has-value null_cons_lemma cons_wf length_of_cons_lemma decidable__equal_int int_subtype_base set_subtype_base int_term_value_subtract_lemma itermSubtract_wf subtract_wf le_wf spread_cons_lemma product_subtype_list int_formula_prop_not_lemma intformnot_wf decidable__le non_neg_length assert_of_le_int ite_rw_true iff_weakening_equal imax_unfold length_wf true_wf squash_wf evalall-reduce valueall-type-polyform list-valueall-type list_wf valueall-type-has-valueall null_nil_lemma neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert int_term_value_add_lemma int_formula_prop_eq_lemma itermAdd_wf intformeq_wf length_of_nil_lemma assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf list-cases less_than_irreflexivity less_than_transitivity1 polyform_wf colength_wf_list nat_wf equal-wf-T-base less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  closedConclusion baseApply pointwiseFunctionality minusEquality sqequalAxiom lessCases dependent_set_memberEquality applyLambdaEquality hypothesis_subsumption baseClosed imageMemberEquality universeEquality imageElimination sqleReflexivity callbyvalueReduce cumulativity instantiate promote_hyp productElimination equalitySymmetry equalityTransitivity equalityElimination addEquality unionElimination applyEquality because_Cache axiomEquality independent_functionElimination computeAll independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination natural_numberEquality intWeakElimination rename setElimination hypothesis hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid lambdaFormation thin cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p,q:polyform(n)  List].    (||add-polynom(n  +  1;ff;p;q)||  =  imax(||p||;||q||))



Date html generated: 2017_04_20-AM-07_09_19
Last ObjectModification: 2017_04_17-AM-10_47_22

Theory : list_1


Home Index