Nuprl Lemma : add-polynom-length
∀[n:ℕ]. ∀[p,q:polyform(n) List].  (||add-polynom(n + 1;ff;p;q)|| = imax(||p||;||q||) ∈ ℤ)
Proof
Definitions occuring in Statement : 
add-polynom: add-polynom(n;rmz;p;q)
, 
polyform: polyform(n)
, 
length: ||as||
, 
list: T List
, 
imax: imax(a;b)
, 
nat: ℕ
, 
bfalse: ff
, 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
subtract: n - m
, 
polyform: polyform(n)
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
colength: colength(L)
, 
cons: [a / b]
, 
decidable: Dec(P)
, 
le: A ≤ B
, 
nequal: a ≠ b ∈ T 
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
squash: ↓T
, 
has-valueall: has-valueall(a)
, 
has-value: (a)↓
, 
list_ind: list_ind, 
length: ||as||
, 
nil: []
, 
evalall: evalall(t)
, 
callbyvalueall: callbyvalueall, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
add-polynom: add-polynom(n;rmz;p;q)
, 
or: P ∨ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
not: ¬A
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
false: False
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
btrue_wf, 
false_wf, 
add-is-int-iff, 
le_int_wf, 
ifthenelse_wf, 
add_functionality_wrt_eq, 
imax_wf, 
bfalse_wf, 
zero-add, 
add-commutes, 
add-swap, 
add-associates, 
add-subtract-cancel, 
subtype_rel-equal, 
add-polynom_wf1, 
top_wf, 
decidable__lt, 
int-value-type, 
value-type-has-value, 
null_cons_lemma, 
cons_wf, 
length_of_cons_lemma, 
decidable__equal_int, 
int_subtype_base, 
set_subtype_base, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
le_wf, 
spread_cons_lemma, 
product_subtype_list, 
int_formula_prop_not_lemma, 
intformnot_wf, 
decidable__le, 
non_neg_length, 
assert_of_le_int, 
ite_rw_true, 
iff_weakening_equal, 
imax_unfold, 
length_wf, 
true_wf, 
squash_wf, 
evalall-reduce, 
valueall-type-polyform, 
list-valueall-type, 
list_wf, 
valueall-type-has-valueall, 
null_nil_lemma, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
itermAdd_wf, 
intformeq_wf, 
length_of_nil_lemma, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
list-cases, 
less_than_irreflexivity, 
less_than_transitivity1, 
polyform_wf, 
colength_wf_list, 
nat_wf, 
equal-wf-T-base, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties
Rules used in proof : 
closedConclusion, 
baseApply, 
pointwiseFunctionality, 
minusEquality, 
sqequalAxiom, 
lessCases, 
dependent_set_memberEquality, 
applyLambdaEquality, 
hypothesis_subsumption, 
baseClosed, 
imageMemberEquality, 
universeEquality, 
imageElimination, 
sqleReflexivity, 
callbyvalueReduce, 
cumulativity, 
instantiate, 
promote_hyp, 
productElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
addEquality, 
unionElimination, 
applyEquality, 
because_Cache, 
axiomEquality, 
independent_functionElimination, 
computeAll, 
independent_pairFormation, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_isectElimination, 
natural_numberEquality, 
intWeakElimination, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
lambdaFormation, 
thin, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p,q:polyform(n)  List].    (||add-polynom(n  +  1;ff;p;q)||  =  imax(||p||;||q||))
Date html generated:
2017_04_20-AM-07_09_19
Last ObjectModification:
2017_04_17-AM-10_47_22
Theory : list_1
Home
Index