Nuprl Lemma : add-polynom_wf1
∀[n:ℕ]. ∀[p,q:polyform(n)]. ∀[rmz:𝔹]. (add-polynom(n;rmz;p;q) ∈ polyform(n))
Proof
Definitions occuring in Statement :
add-polynom: add-polynom(n;rmz;p;q)
,
polyform: polyform(n)
,
nat: ℕ
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
so_apply: x[s1;s2;s3]
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
rm-zeros: rm-zeros(n;p)
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
has-valueall: has-valueall(a)
,
has-value: (a)↓
,
list_ind: list_ind,
length: ||as||
,
evalall: evalall(t)
,
callbyvalueall: callbyvalueall,
squash: ↓T
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
nil: []
,
so_apply: x[s1;s2]
,
so_lambda: λ2x y.t[x; y]
,
colength: colength(L)
,
cons: [a / b]
,
add-polynom: add-polynom(n;rmz;p;q)
,
less_than: a < b
,
int_upper: {i...}
,
assert: ↑b
,
bnot: ¬bb
,
sq_type: SQType(T)
,
bfalse: ff
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
btrue: tt
,
it: ⋅
,
unit: Unit
,
bool: 𝔹
,
polyform: polyform(n)
,
or: P ∨ Q
,
decidable: Dec(P)
,
less_than': less_than'(a;b)
,
le: A ≤ B
,
lelt: i ≤ j < k
,
int_seg: {i..j-}
,
subtype_rel: A ⊆r B
,
guard: {T}
,
prop: ℙ
,
and: P ∧ Q
,
top: Top
,
not: ¬A
,
exists: ∃x:A. B[x]
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
uimplies: b supposing a
,
ge: i ≥ j
,
false: False
,
implies: P
⇒ Q
,
nat: ℕ
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
nil_wf,
list_ind_wf,
poly-zero_wf,
list_ind_cons_lemma,
btrue_wf,
bfalse_wf,
length_wf,
int-value-type,
value-type-has-value,
length_of_cons_lemma,
null_cons_lemma,
cons_wf,
assert_of_bnot,
iff_weakening_uiff,
iff_transitivity,
uiff_transitivity,
evalall-reduce,
valueall-type-polyform,
list-valueall-type,
valueall-type-has-valueall,
length_of_nil_lemma,
null_nil_lemma,
not_wf,
bnot_wf,
assert_wf,
list_wf,
int_subtype_base,
set_subtype_base,
spread_cons_lemma,
product_subtype_list,
list-cases,
colength_wf_list,
equal-wf-T-base,
int_upper_properties,
nat_wf,
int_term_value_add_lemma,
itermAdd_wf,
lelt_wf,
decidable__lt,
zero-add,
nequal-le-implies,
int_upper_subtype_nat,
neg_assert_of_eq_int,
assert-bnot,
bool_subtype_base,
subtype_base_sq,
bool_cases_sqequal,
equal_wf,
eqff_to_assert,
assert_of_eq_int,
eqtt_to_assert,
eq_int_wf,
le_wf,
int_formula_prop_eq_lemma,
intformeq_wf,
int_seg_subtype,
decidable__equal_int,
int_term_value_subtract_lemma,
int_formula_prop_not_lemma,
itermSubtract_wf,
intformnot_wf,
subtract_wf,
decidable__le,
false_wf,
int_seg_subtype_nat,
int_seg_properties,
int_seg_wf,
less_than_irreflexivity,
less_than_transitivity1,
polyform_wf,
bool_wf,
less_than_wf,
ge_wf,
int_formula_prop_wf,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_and_lemma,
intformless_wf,
itermVar_wf,
itermConstant_wf,
intformle_wf,
intformand_wf,
satisfiable-full-omega-tt,
nat_properties
Rules used in proof :
lessEquality,
impliesFunctionality,
sqleReflexivity,
callbyvalueReduce,
imageElimination,
baseClosed,
addEquality,
cumulativity,
instantiate,
promote_hyp,
equalityElimination,
dependent_set_memberEquality,
hypothesis_subsumption,
applyLambdaEquality,
unionElimination,
productElimination,
because_Cache,
applyEquality,
equalitySymmetry,
equalityTransitivity,
axiomEquality,
independent_functionElimination,
computeAll,
independent_pairFormation,
voidEquality,
voidElimination,
isect_memberEquality,
dependent_functionElimination,
intEquality,
int_eqEquality,
lambdaEquality,
dependent_pairFormation,
independent_isectElimination,
natural_numberEquality,
intWeakElimination,
sqequalRule,
rename,
setElimination,
hypothesis,
hypothesisEquality,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
lambdaFormation,
thin,
cut,
introduction,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[p,q:polyform(n)]. \mforall{}[rmz:\mBbbB{}]. (add-polynom(n;rmz;p;q) \mmember{} polyform(n))
Date html generated:
2017_04_17-AM-09_06_45
Last ObjectModification:
2017_04_16-PM-05_03_36
Theory : list_1
Home
Index