Nuprl Lemma : add-polynom_wf1

[n:ℕ]. ∀[p,q:polyform(n)]. ∀[rmz:𝔹].  (add-polynom(n;rmz;p;q) ∈ polyform(n))


Proof




Definitions occuring in Statement :  add-polynom: add-polynom(n;rmz;p;q) polyform: polyform(n) nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) rm-zeros: rm-zeros(n;p) rev_implies:  Q iff: ⇐⇒ Q has-valueall: has-valueall(a) has-value: (a)↓ list_ind: list_ind length: ||as|| evalall: evalall(t) callbyvalueall: callbyvalueall squash: T so_apply: x[s] so_lambda: λ2x.t[x] nil: [] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] colength: colength(L) cons: [a b] add-polynom: add-polynom(n;rmz;p;q) less_than: a < b int_upper: {i...} assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 polyform: polyform(n) or: P ∨ Q decidable: Dec(P) less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} subtype_rel: A ⊆B guard: {T} prop: and: P ∧ Q top: Top not: ¬A exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a ge: i ≥  false: False implies:  Q nat: all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  nil_wf list_ind_wf poly-zero_wf list_ind_cons_lemma btrue_wf bfalse_wf length_wf int-value-type value-type-has-value length_of_cons_lemma null_cons_lemma cons_wf assert_of_bnot iff_weakening_uiff iff_transitivity uiff_transitivity evalall-reduce valueall-type-polyform list-valueall-type valueall-type-has-valueall length_of_nil_lemma null_nil_lemma not_wf bnot_wf assert_wf list_wf int_subtype_base set_subtype_base spread_cons_lemma product_subtype_list list-cases colength_wf_list equal-wf-T-base int_upper_properties nat_wf int_term_value_add_lemma itermAdd_wf lelt_wf decidable__lt zero-add nequal-le-implies int_upper_subtype_nat neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert assert_of_eq_int eqtt_to_assert eq_int_wf le_wf int_formula_prop_eq_lemma intformeq_wf int_seg_subtype decidable__equal_int int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le false_wf int_seg_subtype_nat int_seg_properties int_seg_wf less_than_irreflexivity less_than_transitivity1 polyform_wf bool_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  lessEquality impliesFunctionality sqleReflexivity callbyvalueReduce imageElimination baseClosed addEquality cumulativity instantiate promote_hyp equalityElimination dependent_set_memberEquality hypothesis_subsumption applyLambdaEquality unionElimination productElimination because_Cache applyEquality equalitySymmetry equalityTransitivity axiomEquality independent_functionElimination computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination natural_numberEquality intWeakElimination sqequalRule rename setElimination hypothesis hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid lambdaFormation thin cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p,q:polyform(n)].  \mforall{}[rmz:\mBbbB{}].    (add-polynom(n;rmz;p;q)  \mmember{}  polyform(n))



Date html generated: 2017_04_17-AM-09_06_45
Last ObjectModification: 2017_04_16-PM-05_03_36

Theory : list_1


Home Index