Nuprl Lemma : imax-list-unique

[L:ℤ List]. ∀[a:ℤ].  uiff(imax-list(L) a ∈ ℤ;(∀b∈L.b ≤ a)) supposing (a ∈ L)


Proof




Definitions occuring in Statement :  imax-list: imax-list(L) l_all: (∀x∈L.P[x]) l_member: (x ∈ l) list: List uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] or: P ∨ Q not: ¬A implies:  Q false: False cons: [a b] top: Top nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: guard: {T} decidable: Dec(P) uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q l_all: (∀x∈L.P[x]) le: A ≤ B subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  imax-list-lb list-cases length_of_nil_lemma null_nil_lemma btrue_wf member-implies-null-eq-bfalse nil_wf btrue_neq_bfalse product_subtype_list length_of_cons_lemma add_nat_plus length_wf_nat less_than_wf nat_plus_wf nat_plus_properties decidable__lt add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf false_wf equal_wf imax-list-ub decidable__le intformle_wf int_formula_prop_le_lemma less_than'_wf int_seg_wf length_wf equal-wf-base int_subtype_base l_all_wf le_wf l_member_wf select_wf int_seg_properties list_subtype_base list_wf l_exists_iff le_weakening decidable__equal_int
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality intEquality dependent_functionElimination unionElimination sqequalRule independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed lambdaFormation applyLambdaEquality setElimination rename pointwiseFunctionality baseApply closedConclusion dependent_pairFormation lambdaEquality int_eqEquality computeAll independent_pairEquality because_Cache axiomEquality applyEquality setEquality imageElimination productEquality

Latex:
\mforall{}[L:\mBbbZ{}  List].  \mforall{}[a:\mBbbZ{}].    uiff(imax-list(L)  =  a;(\mforall{}b\mmember{}L.b  \mleq{}  a))  supposing  (a  \mmember{}  L)



Date html generated: 2017_04_14-AM-09_23_57
Last ObjectModification: 2017_02_27-PM-03_58_52

Theory : list_1


Home Index