Nuprl Lemma : int_seg-cardinality-le

i,j:ℤ.  |{i..j-}| ≤ if i ≤then else fi 


Proof




Definitions occuring in Statement :  cardinality-le: |T| ≤ n le_int: i ≤j int_seg: {i..j-} ifthenelse: if then else fi  all: x:A. B[x] subtract: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] cardinality-le: |T| ≤ n member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff guard: {T} prop: exists: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top surject: Surj(A;B;f)
Lemmas referenced :  le_int_wf bool_wf equal-wf-base int_subtype_base assert_wf le_wf lt_int_wf less_than_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_le_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int equal_wf add-member-int_seg1 decidable__le subtract_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermSubtract_wf itermVar_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf lelt_wf int_seg_wf surject_wf int_seg_properties decidable__lt intformless_wf int_formula_prop_less_lemma decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation intEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache sqequalRule baseApply closedConclusion baseClosed applyEquality unionElimination equalityElimination independent_functionElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_functionElimination dependent_pairFormation lambdaEquality setElimination rename dependent_set_memberEquality independent_pairFormation natural_numberEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll functionExtensionality addEquality

Latex:
\mforall{}i,j:\mBbbZ{}.    |\{i..j\msupminus{}\}|  \mleq{}  if  i  \mleq{}z  j  then  j  -  i  else  0  fi 



Date html generated: 2017_04_17-AM-07_45_27
Last ObjectModification: 2017_02_27-PM-04_17_23

Theory : list_1


Home Index