Nuprl Lemma : l_sum-split
∀[A:Type]. ∀[L:A List]. ∀[f:{a:A| (a ∈ L)}  ⟶ ℤ]. ∀[P:{a:A| (a ∈ L)}  ⟶ 𝔹].
  (l_sum(map(f;L)) = (l_sum(map(f;filter(P;L))) + l_sum(map(f;filter(λx.(¬b(P x));L)))) ∈ ℤ)
Proof
Definitions occuring in Statement : 
l_sum: l_sum(L)
, 
l_member: (x ∈ l)
, 
filter: filter(P;l)
, 
map: map(f;as)
, 
list: T List
, 
bnot: ¬bb
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
or: P ∨ Q
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
istype: istype(T)
, 
l_member: (x ∈ l)
, 
select: L[n]
, 
cand: A c∧ B
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
bfalse: ff
, 
assert: ↑b
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
list-cases, 
map_nil_lemma, 
filter_nil_lemma, 
l_sum_nil_lemma, 
l_member_wf, 
nil_wf, 
bool_wf, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-le, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
le_wf, 
map_cons_lemma, 
filter_cons_lemma, 
l_sum_cons_lemma, 
subtype_rel_dep_function, 
cons_wf, 
subtype_rel_sets_simple, 
cons_member, 
length_of_cons_lemma, 
add_nat_plus, 
length_wf_nat, 
decidable__lt, 
nat_plus_properties, 
add-is-int-iff, 
false_wf, 
length_wf, 
select_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
istype-nat, 
list_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
unionElimination, 
functionIsType, 
setIsType, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
equalityIstype, 
because_Cache, 
dependent_set_memberEquality_alt, 
instantiate, 
applyLambdaEquality, 
imageElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
sqequalBase, 
setEquality, 
inrFormation_alt, 
cumulativity, 
pointwiseFunctionality, 
productIsType, 
equalityElimination, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List].  \mforall{}[f:\{a:A|  (a  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[P:\{a:A|  (a  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].
    (l\_sum(map(f;L))  =  (l\_sum(map(f;filter(P;L)))  +  l\_sum(map(f;filter(\mlambda{}x.(\mneg{}\msubb{}(P  x));L)))))
Date html generated:
2020_05_19-PM-09_46_16
Last ObjectModification:
2019_11_12-PM-03_16_45
Theory : list_1
Home
Index