Nuprl Lemma : l_sum-split

[A:Type]. ∀[L:A List]. ∀[f:{a:A| (a ∈ L)}  ⟶ ℤ]. ∀[P:{a:A| (a ∈ L)}  ⟶ 𝔹].
  (l_sum(map(f;L)) (l_sum(map(f;filter(P;L))) l_sum(map(f;filter(λx.(¬b(P x));L)))) ∈ ℤ)


Proof




Definitions occuring in Statement :  l_sum: l_sum(L) l_member: (x ∈ l) filter: filter(P;l) map: map(f;as) list: List bnot: ¬bb bool: 𝔹 uall: [x:A]. B[x] set: {x:A| B[x]}  apply: a lambda: λx.A[x] function: x:A ⟶ B[x] add: m int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: or: P ∨ Q cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q istype: istype(T) l_member: (x ∈ l) select: L[n] cand: c∧ B nat_plus: + uiff: uiff(P;Q) bool: 𝔹 unit: Unit btrue: tt ifthenelse: if then else fi  bnot: ¬bb bfalse: ff assert: b
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases map_nil_lemma filter_nil_lemma l_sum_nil_lemma l_member_wf nil_wf bool_wf product_subtype_list colength-cons-not-zero colength_wf_list istype-le subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf map_cons_lemma filter_cons_lemma l_sum_cons_lemma subtype_rel_dep_function cons_wf subtype_rel_sets_simple cons_member length_of_cons_lemma add_nat_plus length_wf_nat decidable__lt nat_plus_properties add-is-int-iff false_wf length_wf select_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot istype-nat list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality isectIsTypeImplies inhabitedIsType functionIsTypeImplies unionElimination functionIsType setIsType equalityTransitivity equalitySymmetry promote_hyp hypothesis_subsumption productElimination equalityIstype because_Cache dependent_set_memberEquality_alt instantiate applyLambdaEquality imageElimination baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase setEquality inrFormation_alt cumulativity pointwiseFunctionality productIsType equalityElimination universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List].  \mforall{}[f:\{a:A|  (a  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[P:\{a:A|  (a  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].
    (l\_sum(map(f;L))  =  (l\_sum(map(f;filter(P;L)))  +  l\_sum(map(f;filter(\mlambda{}x.(\mneg{}\msubb{}(P  x));L)))))



Date html generated: 2020_05_19-PM-09_46_16
Last ObjectModification: 2019_11_12-PM-03_16_45

Theory : list_1


Home Index