Nuprl Lemma : list_ind_reverse_wf

[A,B:Type]. ∀[L:A List]. ∀[nilcase:B]. ∀[F:B ⟶ (A List) ⟶ A ⟶ B].  (list_ind_reverse(L;nilcase;F) ∈ B)


Proof




Definitions occuring in Statement :  list_ind_reverse: list_ind_reverse(L;nilcase;R) list: List uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T list_ind_reverse: list_ind_reverse(L;nilcase;R) all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  squash: T int_iseg: {i...j} cand: c∧ B true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf length_wf_nat less_than_transitivity1 less_than_irreflexivity decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_subtype_base eq_int_wf bool_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma firstn_wf last_wf length_wf eqtt_to_assert assert_of_eq_int le_wf squash_wf true_wf length_firstn_eq iff_weakening_equal length_firstn non_null_iff_length subtype_rel_list top_wf decidable__lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule comment sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity hypothesisEquality extract_by_obid isectElimination thin isect_memberEquality because_Cache universeEquality lambdaFormation setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination applyEquality baseClosed unionElimination equalityElimination productElimination promote_hyp instantiate functionExtensionality applyLambdaEquality imageElimination dependent_set_memberEquality productEquality imageMemberEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[L:A  List].  \mforall{}[nilcase:B].  \mforall{}[F:B  {}\mrightarrow{}  (A  List)  {}\mrightarrow{}  A  {}\mrightarrow{}  B].
    (list\_ind\_reverse(L;nilcase;F)  \mmember{}  B)



Date html generated: 2017_04_17-AM-08_43_46
Last ObjectModification: 2017_02_27-PM-05_03_21

Theory : list_1


Home Index