Nuprl Lemma : lsum-mul-const

[T:Type]. ∀[L:T List]. ∀[f:{x:T| (x ∈ L)}  ⟶ ℤ]. ∀[c:ℤ].  (c f[x] x ∈ L) (c * Σ(f[x] x ∈ L)) ∈ ℤ)


Proof




Definitions occuring in Statement :  lsum: Σ(f[x] x ∈ L) l_member: (x ∈ l) list: List uall: [x:A]. B[x] so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] multiply: m int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: guard: {T} sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B l_member: (x ∈ l) select: L[n] cand: c∧ B nat_plus: + uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q true: True
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases lsum_nil_lemma decidable__equal_int intformnot_wf intformeq_wf itermMultiply_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma l_member_wf nil_wf product_subtype_list colength-cons-not-zero colength_wf_list istype-le subtract-1-ge-0 subtype_base_sq set_subtype_base int_subtype_base spread_cons_lemma subtract_wf itermSubtract_wf itermAdd_wf int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf lsum_cons_lemma equal_wf squash_wf true_wf add_functionality_wrt_eq length_of_cons_lemma add_nat_plus length_wf_nat decidable__lt nat_plus_properties add-is-int-iff false_wf cons_wf length_wf select_wf lsum_wf subtype_rel_sets_simple cons_member subtype_rel_self iff_weakening_equal mul-distributes istype-nat list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality isectIsTypeImplies inhabitedIsType functionIsTypeImplies unionElimination because_Cache functionIsType setIsType promote_hyp hypothesis_subsumption productElimination equalityIstype dependent_set_memberEquality_alt instantiate equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase multiplyEquality pointwiseFunctionality productIsType inrFormation_alt addEquality imageMemberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[c:\mBbbZ{}].
    (\mSigma{}(c  *  f[x]  |  x  \mmember{}  L)  =  (c  *  \mSigma{}(f[x]  |  x  \mmember{}  L)))



Date html generated: 2020_05_19-PM-09_47_23
Last ObjectModification: 2019_11_12-PM-11_31_42

Theory : list_1


Home Index