Nuprl Lemma : nth_tl-mklist

[n:ℕ]. ∀[f:Top]. ∀[k:ℕ].  (nth_tl(k;mklist(n;f)) mklist(n k;λi.(f (i k))))


Proof




Definitions occuring in Statement :  mklist: mklist(n;f) nth_tl: nth_tl(n;as) nat: uall: [x:A]. B[x] top: Top apply: a lambda: λx.A[x] subtract: m add: m sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: mklist: mklist(n;f) lt_int: i <j subtract: m ifthenelse: if then else fi  btrue: tt bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q decidable: Dec(P) nth_tl: nth_tl(n;as) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] so_apply: x[s] has-value: (a)↓ subtype_rel: A ⊆B le_int: i ≤j
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than subtract-1-ge-0 istype-nat istype-top subtract_wf nth_tl_nil lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma primrec-unroll decidable__le mklist-prepend1 istype-le int_subtype_base decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma le_int_wf assert_of_le_int list_ind_cons_lemma list_ind_nil_lemma le_wf reduce_tl_cons_lemma add-associates nat_wf set_subtype_base value-type-has-value int-value-type exception-not-value has-value_wf_base is-exception_wf primrec0_lemma general_arith_equation2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomSqEquality Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  because_Cache unionElimination equalityElimination productElimination equalityTransitivity equalitySymmetry Error :equalityIstype,  promote_hyp instantiate cumulativity Error :dependent_set_memberEquality_alt,  intEquality addEquality sqequalSqle divergentSqle callbyvalueAdd baseClosed baseApply closedConclusion applyEquality sqleReflexivity addExceptionCases axiomSqleEquality exceptionSqequal

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:Top].  \mforall{}[k:\mBbbN{}].    (nth\_tl(k;mklist(n;f))  \msim{}  mklist(n  -  k;\mlambda{}i.(f  (i  +  k))))



Date html generated: 2019_06_20-PM-01_31_51
Last ObjectModification: 2019_01_21-PM-09_27_30

Theory : list_1


Home Index