Nuprl Lemma : nth_tl-mklist
∀[n:ℕ]. ∀[f:Top]. ∀[k:ℕ].  (nth_tl(k;mklist(n;f)) ~ mklist(n - k;λi.(f (i + k))))
Proof
Definitions occuring in Statement : 
mklist: mklist(n;f)
, 
nth_tl: nth_tl(n;as)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
lambda: λx.A[x]
, 
subtract: n - m
, 
add: n + m
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
mklist: mklist(n;f)
, 
lt_int: i <z j
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
decidable: Dec(P)
, 
nth_tl: nth_tl(n;as)
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
has-value: (a)↓
, 
subtype_rel: A ⊆r B
, 
le_int: i ≤z j
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
subtract-1-ge-0, 
istype-nat, 
istype-top, 
subtract_wf, 
nth_tl_nil, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
primrec-unroll, 
decidable__le, 
mklist-prepend1, 
istype-le, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
le_int_wf, 
assert_of_le_int, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
le_wf, 
reduce_tl_cons_lemma, 
add-associates, 
nat_wf, 
set_subtype_base, 
value-type-has-value, 
int-value-type, 
exception-not-value, 
has-value_wf_base, 
is-exception_wf, 
primrec0_lemma, 
general_arith_equation2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
Error :lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
axiomSqEquality, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
Error :functionIsTypeImplies, 
because_Cache, 
unionElimination, 
equalityElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
Error :dependent_set_memberEquality_alt, 
intEquality, 
addEquality, 
sqequalSqle, 
divergentSqle, 
callbyvalueAdd, 
baseClosed, 
baseApply, 
closedConclusion, 
applyEquality, 
sqleReflexivity, 
addExceptionCases, 
axiomSqleEquality, 
exceptionSqequal
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:Top].  \mforall{}[k:\mBbbN{}].    (nth\_tl(k;mklist(n;f))  \msim{}  mklist(n  -  k;\mlambda{}i.(f  (i  +  k))))
Date html generated:
2019_06_20-PM-01_31_51
Last ObjectModification:
2019_01_21-PM-09_27_30
Theory : list_1
Home
Index