Nuprl Lemma : orbit-cover

[T:Type]
  ((∀x,y:T.  Dec(x y ∈ T))
   finite-type(T)
   (∀f:T ⟶ T
        ∃orbits:T List List
         ((∀orbit∈orbits.0 < ||orbit||
                 ∧ no_repeats(T;orbit)
                 ∧ (∀i:ℕ||orbit||. (orbit[i] (f^i orbit[0]) ∈ T))
                 ∧ (∀b:T. ((b ∈ orbit) ⇐⇒ ∃n:ℕ(b (f^n orbit[0]) ∈ T))))
         ∧ (∀a:T. (∃orbit∈orbits. (a ∈ orbit)))
         ∧ (∀o1∈orbits.(∀o2∈orbits.(o1[0] ∈ o2)  o1 ⊆ o2)))))


Proof




Definitions occuring in Statement :  finite-type: finite-type(T) l_contains: A ⊆ B l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) no_repeats: no_repeats(T;l) l_member: (x ∈ l) select: L[n] length: ||as|| list: List fun_exp: f^n int_seg: {i..j-} nat: less_than: a < b decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T exists: x:A. B[x] finite-type: finite-type(T) prop: and: P ∧ Q int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top less_than: a < b squash: T subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q pi1: fst(t) nat: cand: c∧ B so_lambda: λ2x.t[x] ge: i ≥  so_apply: x[s] compose: g cons: [a b] uiff: uiff(P;Q) subtract: m true: True surject: Surj(A;B;f) l_all: (∀x∈L.P[x]) l_contains: A ⊆ B l_member: (x ∈ l)
Lemmas referenced :  orbit-exists finite-type_wf decidable_wf equal_wf no_repeats_wf int_seg_wf length_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma fun_exp_wf int_seg_subtype_nat l_member_wf nat_wf map_wf list_wf compose_wf upto_wf l_all_wf less_than_wf all_wf nat_properties istype-false iff_wf exists_wf l_exists_wf l_all_iff member_map le_wf fun_exp0_lemma list-cases length_of_nil_lemma nil_member product_subtype_list length_of_cons_lemma length_wf_nat not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel l_exists_iff squash_wf true_wf subtype_rel_self iff_weakening_equal member_upto2 itermAdd_wf int_term_value_add_lemma fun_exp_add_sq l_contains_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis dependent_functionElimination promote_hyp productElimination Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  sqequalRule universeEquality applyEquality functionExtensionality Error :productIsType,  natural_numberEquality Error :equalityIsType1,  cumulativity because_Cache setElimination rename independent_isectElimination unionElimination approximateComputation Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation imageElimination equalityTransitivity equalitySymmetry productEquality Error :setIsType,  hyp_replacement applyLambdaEquality Error :dependent_set_memberEquality_alt,  hypothesis_subsumption addEquality minusEquality imageMemberEquality baseClosed instantiate functionEquality

Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  finite-type(T)
    {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  T
                \mexists{}orbits:T  List  List
                  ((\mforall{}orbit\mmember{}orbits.0  <  ||orbit||
                                  \mwedge{}  no\_repeats(T;orbit)
                                  \mwedge{}  (\mforall{}i:\mBbbN{}||orbit||.  (orbit[i]  =  (f\^{}i  orbit[0])))
                                  \mwedge{}  (\mforall{}b:T.  ((b  \mmember{}  orbit)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  (b  =  (f\^{}n  orbit[0])))))
                  \mwedge{}  (\mforall{}a:T.  (\mexists{}orbit\mmember{}orbits.  (a  \mmember{}  orbit)))
                  \mwedge{}  (\mforall{}o1\mmember{}orbits.(\mforall{}o2\mmember{}orbits.(o1[0]  \mmember{}  o2)  {}\mRightarrow{}  o1  \msubseteq{}  o2)))))



Date html generated: 2019_06_20-PM-01_39_03
Last ObjectModification: 2018_10_04-PM-02_56_28

Theory : list_1


Home Index