Nuprl Lemma : select-remove-first

[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ 𝔹]. ∀[i:ℕ||remove-first(P;L)||].
  (remove-first(P;L)[i] L[i] supposing ∀j:ℕ1. (¬↑(P L[j]))
  ∧ remove-first(P;L)[i] L[i 1] supposing ∃j:ℕ1. (↑(P L[j])))


Proof




Definitions occuring in Statement :  remove-first: remove-first(P;L) l_member: (x ∈ l) select: L[n] length: ||as|| list: List int_seg: {i..j-} assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] add: m natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: or: P ∨ Q remove-first: remove-first(P;L) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T} int_seg: {i..j-} lelt: i ≤ j < k cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T decidable: Dec(P) subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b subtract: m l_all: (∀x∈L.P[x])
Lemmas referenced :  length-remove-first-le nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list-cases list_ind_nil_lemma length_of_nil_lemma stuck-spread istype-base int_seg_properties int_seg_wf le_wf l_member_wf nil_wf bool_wf product_subtype_list colength-cons-not-zero colength_wf_list istype-false subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le list_ind_cons_lemma length_of_cons_lemma cons_member cons_wf subtype_rel_sets eqtt_to_assert eqff_to_assert bool_subtype_base bool_cases_sqequal assert-bnot nat_wf length_wf remove-first_wf list_wf list-subtype select_wf assert_wf not_wf lelt_wf decidable__lt false_wf select_cons_tl_sq int_seg_cases int_seg_subtype add-is-int-iff length_wf_nat subtract-add-cancel select_member add-member-int_seg2 add-subtract-cancel select-cons-tl all_wf length-remove-first subtract-is-int-iff exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :lambdaFormation_alt,  setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  productElimination independent_pairEquality axiomSqEquality Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  unionElimination baseClosed Error :functionIsType,  Error :setIsType,  promote_hyp hypothesis_subsumption Error :equalityIsType1,  because_Cache Error :dependent_set_memberEquality_alt,  instantiate equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination Error :equalityIsType4,  baseApply closedConclusion applyEquality intEquality Error :inlFormation_alt,  Error :functionExtensionality_alt,  Error :inrFormation_alt,  equalityElimination Error :equalityIsType3,  cumulativity universeEquality Error :productIsType,  setEquality functionExtensionality addEquality lambdaFormation voidEquality isect_memberEquality lambdaEquality dependent_pairFormation dependent_set_memberEquality inlFormation pointwiseFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[i:\mBbbN{}||remove-first(P;L)||].
    (remove-first(P;L)[i]  \msim{}  L[i]  supposing  \mforall{}j:\mBbbN{}i  +  1.  (\mneg{}\muparrow{}(P  L[j]))
    \mwedge{}  remove-first(P;L)[i]  \msim{}  L[i  +  1]  supposing  \mexists{}j:\mBbbN{}i  +  1.  (\muparrow{}(P  L[j])))



Date html generated: 2019_06_20-PM-01_42_54
Last ObjectModification: 2018_10_15-PM-05_48_05

Theory : list_1


Home Index