Nuprl Lemma : select-remove-first
∀[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ 𝔹]. ∀[i:ℕ||remove-first(P;L)||].
  (remove-first(P;L)[i] ~ L[i] supposing ∀j:ℕi + 1. (¬↑(P L[j]))
  ∧ remove-first(P;L)[i] ~ L[i + 1] supposing ∃j:ℕi + 1. (↑(P L[j])))
Proof
Definitions occuring in Statement : 
remove-first: remove-first(P;L)
, 
l_member: (x ∈ l)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
or: P ∨ Q
, 
remove-first: remove-first(P;L)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
subtract: n - m
, 
l_all: (∀x∈L.P[x])
Lemmas referenced : 
length-remove-first-le, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
list-cases, 
list_ind_nil_lemma, 
length_of_nil_lemma, 
stuck-spread, 
istype-base, 
int_seg_properties, 
int_seg_wf, 
le_wf, 
l_member_wf, 
nil_wf, 
bool_wf, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-false, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
list_ind_cons_lemma, 
length_of_cons_lemma, 
cons_member, 
cons_wf, 
subtype_rel_sets, 
eqtt_to_assert, 
eqff_to_assert, 
bool_subtype_base, 
bool_cases_sqequal, 
assert-bnot, 
nat_wf, 
length_wf, 
remove-first_wf, 
list_wf, 
list-subtype, 
select_wf, 
assert_wf, 
not_wf, 
lelt_wf, 
decidable__lt, 
false_wf, 
select_cons_tl_sq, 
int_seg_cases, 
int_seg_subtype, 
add-is-int-iff, 
length_wf_nat, 
subtract-add-cancel, 
select_member, 
add-member-int_seg2, 
add-subtract-cancel, 
select-cons-tl, 
all_wf, 
length-remove-first, 
subtract-is-int-iff, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :lambdaFormation_alt, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
productElimination, 
independent_pairEquality, 
axiomSqEquality, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
Error :functionIsTypeImplies, 
unionElimination, 
baseClosed, 
Error :functionIsType, 
Error :setIsType, 
promote_hyp, 
hypothesis_subsumption, 
Error :equalityIsType1, 
because_Cache, 
Error :dependent_set_memberEquality_alt, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
imageElimination, 
Error :equalityIsType4, 
baseApply, 
closedConclusion, 
applyEquality, 
intEquality, 
Error :inlFormation_alt, 
Error :functionExtensionality_alt, 
Error :inrFormation_alt, 
equalityElimination, 
Error :equalityIsType3, 
cumulativity, 
universeEquality, 
Error :productIsType, 
setEquality, 
functionExtensionality, 
addEquality, 
lambdaFormation, 
voidEquality, 
isect_memberEquality, 
lambdaEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
inlFormation, 
pointwiseFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[i:\mBbbN{}||remove-first(P;L)||].
    (remove-first(P;L)[i]  \msim{}  L[i]  supposing  \mforall{}j:\mBbbN{}i  +  1.  (\mneg{}\muparrow{}(P  L[j]))
    \mwedge{}  remove-first(P;L)[i]  \msim{}  L[i  +  1]  supposing  \mexists{}j:\mBbbN{}i  +  1.  (\muparrow{}(P  L[j])))
Date html generated:
2019_06_20-PM-01_42_54
Last ObjectModification:
2018_10_15-PM-05_48_05
Theory : list_1
Home
Index