Nuprl Lemma : assert-is-power

n:ℕ+. ∀x:ℕ.  (↑is-power(n;x) ⇐⇒ ∃r:ℕ(x r^n ∈ ℤ))


Proof




Definitions occuring in Statement :  is-power: is-power(n;x) exp: i^n nat_plus: + nat: assert: b all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] is-power: is-power(n;x) uall: [x:A]. B[x] member: t ∈ T implies:  Q has-value: (a)↓ uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q iff: ⇐⇒ Q subtype_rel: A ⊆B nat_plus: + rev_implies:  Q exists: x:A. B[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False prop: sq_type: SQType(T) guard: {T} squash: T true: True uiff: uiff(P;Q) le: A ≤ B
Lemmas referenced :  iroot-property iroot_wf value-type-has-value nat_wf set-value-type le_wf istype-int int-value-type set_subtype_base less_than_wf int_subtype_base istype-le exp_wf2 nat_properties nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-less_than iff_weakening_uiff assert_wf eq_int_wf fastexp_wf equal-wf-base assert_of_eq_int istype-assert istype-nat nat_plus_wf subtype_base_sq exp-fastexp nat_plus_subtype_nat squash_wf true_wf exp-le-iff itermAdd_wf int_term_value_add_lemma decidable__equal_int intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType sqequalRule callbyvalueReduce independent_isectElimination intEquality lambdaEquality_alt natural_numberEquality productElimination independent_pairFormation equalityIstype baseApply closedConclusion baseClosed applyEquality sqequalBase equalitySymmetry productIsType because_Cache dependent_set_memberEquality_alt setElimination rename dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  universeIsType voidElimination addEquality promote_hyp equalityTransitivity instantiate cumulativity imageElimination imageMemberEquality

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}x:\mBbbN{}.    (\muparrow{}is-power(n;x)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}r:\mBbbN{}.  (x  =  r\^{}n))



Date html generated: 2020_05_19-PM-10_03_42
Last ObjectModification: 2020_01_04-PM-08_29_26

Theory : num_thy_1


Home Index