Nuprl Lemma : assert-is-power
∀n:ℕ+. ∀x:ℕ.  (↑is-power(n;x) 
⇐⇒ ∃r:ℕ. (x = r^n ∈ ℤ))
Proof
Definitions occuring in Statement : 
is-power: is-power(n;x)
, 
exp: i^n
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
is-power: is-power(n;x)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
prop: ℙ
, 
sq_type: SQType(T)
, 
guard: {T}
, 
squash: ↓T
, 
true: True
, 
uiff: uiff(P;Q)
, 
le: A ≤ B
Lemmas referenced : 
iroot-property, 
iroot_wf, 
value-type-has-value, 
nat_wf, 
set-value-type, 
le_wf, 
istype-int, 
int-value-type, 
set_subtype_base, 
less_than_wf, 
int_subtype_base, 
istype-le, 
exp_wf2, 
nat_properties, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-less_than, 
iff_weakening_uiff, 
assert_wf, 
eq_int_wf, 
fastexp_wf, 
equal-wf-base, 
assert_of_eq_int, 
istype-assert, 
istype-nat, 
nat_plus_wf, 
subtype_base_sq, 
exp-fastexp, 
nat_plus_subtype_nat, 
squash_wf, 
true_wf, 
exp-le-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
sqequalRule, 
callbyvalueReduce, 
independent_isectElimination, 
intEquality, 
lambdaEquality_alt, 
natural_numberEquality, 
productElimination, 
independent_pairFormation, 
equalityIstype, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
sqequalBase, 
equalitySymmetry, 
productIsType, 
because_Cache, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
universeIsType, 
voidElimination, 
addEquality, 
promote_hyp, 
equalityTransitivity, 
instantiate, 
cumulativity, 
imageElimination, 
imageMemberEquality
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}x:\mBbbN{}.    (\muparrow{}is-power(n;x)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}r:\mBbbN{}.  (x  =  r\^{}n))
Date html generated:
2020_05_19-PM-10_03_42
Last ObjectModification:
2020_01_04-PM-08_29_26
Theory : num_thy_1
Home
Index