Nuprl Lemma : code-seq_wf
∀[k:ℕ]. ∀[s:ℕk ⟶ ℕ]. (code-seq(k;s) ∈ ℕ)
Proof
Definitions occuring in Statement :
code-seq: code-seq(k;s)
,
int_seg: {i..j-}
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
code-seq: code-seq(k;s)
,
nat: ℕ
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
ifthenelse: if b then t else f fi
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
prop: ℙ
,
bfalse: ff
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
subtype_rel: A ⊆r B
,
guard: {T}
Lemmas referenced :
eq_int_wf,
bool_wf,
uiff_transitivity,
equal-wf-T-base,
assert_wf,
eqtt_to_assert,
assert_of_eq_int,
false_wf,
le_wf,
iff_transitivity,
bnot_wf,
not_wf,
iff_weakening_uiff,
eqff_to_assert,
assert_of_bnot,
code-pair_wf,
subtract_wf,
nat_properties,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermSubtract_wf,
itermVar_wf,
intformeq_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_subtract_lemma,
int_term_value_var_lemma,
int_formula_prop_eq_lemma,
int_formula_prop_wf,
add_nat_wf,
code-seq1_wf,
int_seg_wf,
nat_wf,
add-is-int-iff,
itermAdd_wf,
int_term_value_add_lemma,
equal_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
setElimination,
rename,
because_Cache,
hypothesis,
natural_numberEquality,
lambdaFormation,
unionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
baseClosed,
intEquality,
hypothesisEquality,
independent_functionElimination,
productElimination,
independent_isectElimination,
dependent_set_memberEquality,
independent_pairFormation,
impliesFunctionality,
addEquality,
dependent_functionElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
isect_memberEquality,
voidElimination,
voidEquality,
computeAll,
applyEquality,
functionExtensionality,
applyLambdaEquality,
pointwiseFunctionality,
promote_hyp,
baseApply,
closedConclusion,
axiomEquality,
functionEquality
Latex:
\mforall{}[k:\mBbbN{}]. \mforall{}[s:\mBbbN{}k {}\mrightarrow{} \mBbbN{}]. (code-seq(k;s) \mmember{} \mBbbN{})
Date html generated:
2019_06_20-PM-02_40_17
Last ObjectModification:
2019_06_12-PM-00_28_19
Theory : num_thy_1
Home
Index