Nuprl Lemma : exp_difference_bound
∀[n:ℕ+]. ∀[M:ℕ]. ∀[x,y:ℤ].  |x^n - y^n| ≤ ((n * M^n - 1) * |x - y|) supposing (|x| ≤ M) ∧ (|y| ≤ M)
Proof
Definitions occuring in Statement : 
exp: i^n
, 
absval: |i|
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
multiply: n * m
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
less_than': less_than'(a;b)
, 
so_apply: x[s]
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
subtract: n - m
Lemmas referenced : 
add-zero, 
zero-mul, 
add-mul-special, 
add-commutes, 
add-swap, 
minus-one-mul, 
add-associates, 
minus-add, 
exp_add, 
multiply_functionality_wrt_le, 
exp_wf4, 
exp_preserves_le, 
absval_exp, 
le_weakening, 
absval_sum, 
le_functionality, 
sum_le, 
sum_constant, 
mul_com, 
iff_weakening_equal, 
absval_mul, 
exp_difference_factor, 
true_wf, 
squash_wf, 
mul_preserves_le, 
int_seg_wf, 
false_wf, 
int_seg_subtype_nat, 
int_term_value_add_lemma, 
itermAdd_wf, 
int_seg_properties, 
sum_wf, 
nat_plus_wf, 
nat_wf, 
and_wf, 
nat_plus_subtype_nat, 
absval_wf, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_plus_properties, 
nat_properties, 
subtract_wf, 
exp_wf2, 
less_than'_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
multiplyEquality, 
dependent_set_memberEquality, 
setElimination, 
rename, 
natural_numberEquality, 
hypothesis, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
lambdaFormation, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_functionElimination, 
setEquality, 
minusEquality
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[M:\mBbbN{}].  \mforall{}[x,y:\mBbbZ{}].    |x\^{}n  -  y\^{}n|  \mleq{}  ((n  *  M\^{}n  -  1)  *  |x  -  y|)  supposing  (|x|  \mleq{}  M)  \mwedge{}  (|y|  \mleq{}  M)
Date html generated:
2016_05_14-PM-04_28_04
Last ObjectModification:
2016_01_14-PM-11_40_37
Theory : num_thy_1
Home
Index