Nuprl Lemma : exp_difference_bound

[n:ℕ+]. ∀[M:ℕ]. ∀[x,y:ℤ].  |x^n y^n| ≤ ((n M^n 1) |x y|) supposing (|x| ≤ M) ∧ (|y| ≤ M)


Proof




Definitions occuring in Statement :  exp: i^n absval: |i| nat_plus: + nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B and: P ∧ Q multiply: m subtract: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q le: A ≤ B not: ¬A implies:  Q false: False nat: nat_plus: + ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: subtype_rel: A ⊆B true: True so_lambda: λ2x.t[x] int_seg: {i..j-} guard: {T} lelt: i ≤ j < k less_than': less_than'(a;b) so_apply: x[s] squash: T iff: ⇐⇒ Q rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) subtract: m
Lemmas referenced :  add-zero zero-mul add-mul-special add-commutes add-swap minus-one-mul add-associates minus-add exp_add multiply_functionality_wrt_le exp_wf4 exp_preserves_le absval_exp le_weakening absval_sum le_functionality sum_le sum_constant mul_com iff_weakening_equal absval_mul exp_difference_factor true_wf squash_wf mul_preserves_le int_seg_wf false_wf int_seg_subtype_nat int_term_value_add_lemma itermAdd_wf int_seg_properties sum_wf nat_plus_wf nat_wf and_wf nat_plus_subtype_nat absval_wf le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_plus_properties nat_properties subtract_wf exp_wf2 less_than'_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache lemma_by_obid isectElimination multiplyEquality dependent_set_memberEquality setElimination rename natural_numberEquality hypothesis unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll applyEquality axiomEquality equalityTransitivity equalitySymmetry addEquality lambdaFormation imageElimination imageMemberEquality baseClosed universeEquality independent_functionElimination setEquality minusEquality

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[M:\mBbbN{}].  \mforall{}[x,y:\mBbbZ{}].    |x\^{}n  -  y\^{}n|  \mleq{}  ((n  *  M\^{}n  -  1)  *  |x  -  y|)  supposing  (|x|  \mleq{}  M)  \mwedge{}  (|y|  \mleq{}  M)



Date html generated: 2016_05_14-PM-04_28_04
Last ObjectModification: 2016_01_14-PM-11_40_37

Theory : num_thy_1


Home Index