Nuprl Lemma : absval_sum

[n:ℕ]. ∀[f:ℕn ⟶ ℤ].  (|Σ(f[x] x < n)| ≤ Σ(|f[x]| x < n))


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) absval: |i| int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] nat: subtype_rel: A ⊆B all: x:A. B[x] implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: le: A ≤ B absval: |i| less_than': less_than'(a;b) guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  le_weakening int-triangle-inequality le_functionality int_term_value_add_lemma itermAdd_wf lelt_wf decidable__lt sum_wf assert_of_bnot eqff_to_assert iff_weakening_uiff not_wf bnot_wf bfalse_wf iff_transitivity assert_of_eq_int eqtt_to_assert assert_wf btrue_wf equal_wf uiff_transitivity bool_wf eq_int_wf primrec-unroll subtype_rel_self int_seg_subtype subtype_rel_dep_function int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le int_seg_properties le_wf false_wf primrec0_lemma nat_wf primrec_wf less_than'_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties absval_wf int_seg_wf sum-as-primrec
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality natural_numberEquality setElimination rename hypothesis because_Cache lambdaFormation intWeakElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination productElimination independent_pairEquality addEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality minusEquality dependent_set_memberEquality setEquality unionElimination equalityElimination impliesFunctionality equalityEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    (|\mSigma{}(f[x]  |  x  <  n)|  \mleq{}  \mSigma{}(|f[x]|  |  x  <  n))



Date html generated: 2016_05_14-PM-04_27_53
Last ObjectModification: 2016_01_14-PM-11_34_45

Theory : num_thy_1


Home Index