Nuprl Lemma : fermat-little

p:ℕ(prime(p)  (∀x:ℕ(x^p ≡ mod p)))


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m prime: prime(a) exp: i^n nat: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] nat: prop: exists: x:A. B[x] and: P ∧ Q cand: c∧ B inject: Inj(A;B;f) int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q false: False guard: {T} less_than: a < b squash: T uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top rotate: rot(n) compose: g true: True iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] ifthenelse: if then else fi  btrue: tt sq_type: SQType(T) le: A ≤ B subtract: m uiff: uiff(P;Q) bfalse: ff equipollent: B prime: prime(a) less_than': less_than'(a;b) biject: Bij(A;B;f) surject: Surj(A;B;f) bool: 𝔹 unit: Unit it:
Lemmas referenced :  eqmod-prime-order-fixedpoints exp_wf4 prime_wf nat_wf int_seg_wf compose_wf rotate_wf equipollent-exp equipollent_wf exp_wf2 inject_wf equal_wf fun_exp_wf istype-universe int_seg_properties nat_properties decidable__le le_wf less_than_wf full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma decidable__equal_int subtract_wf intformeq_wf itermSubtract_wf int_formula_prop_eq_lemma int_term_value_subtract_lemma squash_wf true_wf bool_wf eq_int_eq_true btrue_wf subtype_rel_self iff_weakening_equal set_subtype_base int_subtype_base ifthenelse_wf subtype_base_sq eq_int_wf assert_wf bnot_wf not_wf equal-wf-base-T add-associates add-swap add-commutes zero-add bool_cases bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot biject_wf istype-false ge_wf subtract-1-ge-0 equal-wf-T-base subtract-add-cancel uiff_transitivity int_seg_subtype_nat lelt_wf fun_exp_compose2 rotate-order
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis independent_functionElimination Error :inhabitedIsType,  Error :universeIsType,  setElimination rename Error :dependent_pairFormation_alt,  functionEquality natural_numberEquality Error :lambdaEquality_alt,  because_Cache Error :functionIsType,  independent_pairFormation sqequalRule Error :productIsType,  setEquality applyEquality Error :equalityIsType1,  Error :functionExtensionality_alt,  Error :dependent_set_memberEquality_alt,  productElimination unionElimination equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination independent_isectElimination approximateComputation int_eqEquality Error :isect_memberEquality_alt,  voidElimination universeEquality imageMemberEquality baseClosed instantiate Error :equalityIsType3,  baseApply closedConclusion intEquality addEquality Error :equalityIsType4,  cumulativity Error :setIsType,  intWeakElimination axiomEquality Error :functionIsTypeImplies,  equalityElimination hyp_replacement

Latex:
\mforall{}p:\mBbbN{}.  (prime(p)  {}\mRightarrow{}  (\mforall{}x:\mBbbN{}.  (x\^{}p  \mequiv{}  x  mod  p)))



Date html generated: 2019_06_20-PM-02_28_52
Last ObjectModification: 2018_10_05-PM-10_53_52

Theory : num_thy_1


Home Index