Nuprl Lemma : gcd-exp

x,y:ℤ. ∀n:ℕ.  (gcd(x^n;y^n) gcd(x;y)^n)


Proof




Definitions occuring in Statement :  assoced: b exp: i^n gcd: gcd(a;b) nat: all: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q gcd_p: GCD(a;b;y) and: P ∧ Q cand: c∧ B prop: exists: x:A. B[x] subtype_rel: A ⊆B iff: ⇐⇒ Q top: Top uimplies: supposing a sq_type: SQType(T) guard: {T} true: True nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False squash: T rev_implies:  Q
Lemmas referenced :  gcd_unique exp_wf2 gcd_wf gcd_sat_pred exp-divides gcd_is_divisor_1 gcd_is_divisor_2 divides_wf istype-nat istype-int gcd-property coprime_wf int_subtype_base coprime-exp coprime_bezout_id istype-void subtype_base_sq nat_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermMultiply_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf mul-distributes mul-swap mul-commutes one-mul squash_wf true_wf add_functionality_wrt_eq exp-of-mul subtype_rel_self iff_weakening_equal divides-add divides-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis independent_functionElimination independent_pairFormation because_Cache productElimination sqequalRule Error :productIsType,  Error :universeIsType,  Error :inhabitedIsType,  Error :equalityIstype,  applyEquality baseApply closedConclusion baseClosed sqequalBase equalitySymmetry equalityTransitivity applyLambdaEquality multiplyEquality Error :isect_memberEquality_alt,  voidElimination instantiate cumulativity intEquality independent_isectElimination natural_numberEquality setElimination rename unionElimination approximateComputation Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality imageElimination imageMemberEquality universeEquality Error :inrFormation_alt

Latex:
\mforall{}x,y:\mBbbZ{}.  \mforall{}n:\mBbbN{}.    (gcd(x\^{}n;y\^{}n)  \msim{}  gcd(x;y)\^{}n)



Date html generated: 2019_06_20-PM-02_32_44
Last ObjectModification: 2018_11_28-PM-07_17_30

Theory : num_thy_1


Home Index