Nuprl Lemma : gcd-exp
∀x,y:ℤ. ∀n:ℕ.  (gcd(x^n;y^n) ~ gcd(x;y)^n)
Proof
Definitions occuring in Statement : 
assoced: a ~ b
, 
exp: i^n
, 
gcd: gcd(a;b)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
gcd_p: GCD(a;b;y)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
top: Top
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
true: True
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
squash: ↓T
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
gcd_unique, 
exp_wf2, 
gcd_wf, 
gcd_sat_pred, 
exp-divides, 
gcd_is_divisor_1, 
gcd_is_divisor_2, 
divides_wf, 
istype-nat, 
istype-int, 
gcd-property, 
coprime_wf, 
int_subtype_base, 
coprime-exp, 
coprime_bezout_id, 
istype-void, 
subtype_base_sq, 
nat_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
mul-distributes, 
mul-swap, 
mul-commutes, 
one-mul, 
squash_wf, 
true_wf, 
add_functionality_wrt_eq, 
exp-of-mul, 
subtype_rel_self, 
iff_weakening_equal, 
divides-add, 
divides-mul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
independent_pairFormation, 
because_Cache, 
productElimination, 
sqequalRule, 
Error :productIsType, 
Error :universeIsType, 
Error :inhabitedIsType, 
Error :equalityIstype, 
applyEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
sqequalBase, 
equalitySymmetry, 
equalityTransitivity, 
applyLambdaEquality, 
multiplyEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
unionElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
imageElimination, 
imageMemberEquality, 
universeEquality, 
Error :inrFormation_alt
Latex:
\mforall{}x,y:\mBbbZ{}.  \mforall{}n:\mBbbN{}.    (gcd(x\^{}n;y\^{}n)  \msim{}  gcd(x;y)\^{}n)
Date html generated:
2019_06_20-PM-02_32_44
Last ObjectModification:
2018_11_28-PM-07_17_30
Theory : num_thy_1
Home
Index