Nuprl Lemma : gcd-property
∀x,y:ℤ.  ∃a,b:ℤ. (CoPrime(a,b) ∧ (x = (gcd(x;y) * a) ∈ ℤ) ∧ (y = (gcd(x;y) * b) ∈ ℤ))
Proof
Definitions occuring in Statement : 
coprime: CoPrime(a,b)
, 
gcd: gcd(a;b)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
divides: b | a
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
coprime: CoPrime(a,b)
, 
gcd_p: GCD(a;b;y)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
true: True
, 
squash: ↓T
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
gcd_is_divisor_1, 
gcd_is_divisor_2, 
decidable__equal_int, 
gcd_wf, 
subtype_base_sq, 
int_subtype_base, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
mul-one, 
int_formula_prop_wf, 
coprime_wf, 
equal-wf-base, 
exists_wf, 
one_divs_any, 
divides_wf, 
coprime_bezout_id, 
bezout_ident, 
gcd_sat_pred, 
gcd_unique, 
assoced_elim, 
gcd-properties, 
equal_wf, 
squash_wf, 
true_wf, 
add_functionality_wrt_eq, 
iff_weakening_equal, 
mul_cancel_in_eq, 
nequal_wf, 
itermAdd_wf, 
int_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
because_Cache, 
hypothesis, 
natural_numberEquality, 
unionElimination, 
intEquality, 
instantiate, 
isectElimination, 
cumulativity, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
independent_pairFormation, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll, 
productEquality, 
applyEquality, 
baseClosed, 
baseApply, 
closedConclusion, 
addEquality, 
multiplyEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
dependent_set_memberEquality
Latex:
\mforall{}x,y:\mBbbZ{}.    \mexists{}a,b:\mBbbZ{}.  (CoPrime(a,b)  \mwedge{}  (x  =  (gcd(x;y)  *  a))  \mwedge{}  (y  =  (gcd(x;y)  *  b)))
Date html generated:
2017_04_17-AM-09_45_39
Last ObjectModification:
2017_02_27-PM-05_40_11
Theory : num_thy_1
Home
Index