Nuprl Lemma : gcd-property

x,y:ℤ.  ∃a,b:ℤ(CoPrime(a,b) ∧ (x (gcd(x;y) a) ∈ ℤ) ∧ (y (gcd(x;y) b) ∈ ℤ))


Proof




Definitions occuring in Statement :  coprime: CoPrime(a,b) gcd: gcd(a;b) all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T divides: a exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} and: P ∧ Q cand: c∧ B satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] coprime: CoPrime(a,b) gcd_p: GCD(a;b;y) iff: ⇐⇒ Q rev_implies:  Q true: True squash: T int_nzero: -o nequal: a ≠ b ∈ 
Lemmas referenced :  gcd_is_divisor_1 gcd_is_divisor_2 decidable__equal_int gcd_wf subtype_base_sq int_subtype_base satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermMultiply_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_constant_lemma mul-one int_formula_prop_wf coprime_wf equal-wf-base exists_wf one_divs_any divides_wf coprime_bezout_id bezout_ident gcd_sat_pred gcd_unique assoced_elim gcd-properties equal_wf squash_wf true_wf add_functionality_wrt_eq iff_weakening_equal mul_cancel_in_eq nequal_wf itermAdd_wf int_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination because_Cache hypothesis natural_numberEquality unionElimination intEquality instantiate isectElimination cumulativity independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination independent_pairFormation dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll productEquality applyEquality baseClosed baseApply closedConclusion addEquality multiplyEquality imageElimination universeEquality imageMemberEquality dependent_set_memberEquality

Latex:
\mforall{}x,y:\mBbbZ{}.    \mexists{}a,b:\mBbbZ{}.  (CoPrime(a,b)  \mwedge{}  (x  =  (gcd(x;y)  *  a))  \mwedge{}  (y  =  (gcd(x;y)  *  b)))



Date html generated: 2017_04_17-AM-09_45_39
Last ObjectModification: 2017_02_27-PM-05_40_11

Theory : num_thy_1


Home Index