Nuprl Lemma : sum-of-three-cubes-iff-3

This solution to the problem of writing 33 as the sum of three cubes
was found around March 9, 2019 by Andrew Booker using 15 core-years
computation time (over three weeks real time) on super-computer in Bristol.

The smallest number for which it is unknown whether it is the sum of three
cubes is now 42 (and the next is 114).⋅

k:ℕ
  (∃a,b,c:ℤ(((a a) (b b) (c c)) k ∈ ℤ)
  ⇐⇒ ∃d:ℕ. ∃e:ℤ((∃c:ℤ(((d e) k) (c c) ∈ ℤ)) ∧ (∃n:ℕ(((4 e) d) (3 n) ∈ ℤ))))


Proof




Definitions occuring in Statement :  nat: all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q multiply: m subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] subtype_rel: A ⊆B nat: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a rev_implies:  Q or: P ∨ Q ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: false: False cand: c∧ B subtract: m int_nzero: -o nequal: a ≠ b ∈  sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) squash: T true: True
Lemmas referenced :  sum-of-three-cubes-iff-2 istype-int int_subtype_base set_subtype_base le_wf istype-nat nat_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le decidable__equal_int intformand_wf intformeq_wf itermSubtract_wf itermMultiply_wf itermVar_wf itermMinus_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_mul_lemma int_term_value_var_lemma int_term_value_minus_lemma divide_wfa subtract_wf nequal_wf subtype_base_sq div_rem_sum add-is-int-iff multiply-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf minus-minus minus-one-mul add-commutes add-associates add-mul-special zero-mul zero-add rem-exact equal_wf divide-exact iff_weakening_equal
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_pairFormation productElimination independent_functionElimination sqequalRule Error :productIsType,  because_Cache Error :equalityIstype,  baseApply closedConclusion baseClosed applyEquality isectElimination intEquality Error :lambdaEquality_alt,  natural_numberEquality Error :inhabitedIsType,  independent_isectElimination sqequalBase equalitySymmetry unionElimination Error :dependent_pairFormation_alt,  Error :dependent_set_memberEquality_alt,  setElimination rename approximateComputation Error :isect_memberEquality_alt,  voidElimination Error :universeIsType,  equalityTransitivity minusEquality int_eqEquality multiplyEquality instantiate cumulativity pointwiseFunctionality promote_hyp Error :unionIsType,  Error :functionIsType,  Error :inlFormation_alt,  Error :inrFormation_alt,  imageElimination imageMemberEquality

Latex:
\mforall{}k:\mBbbN{}
    (\mexists{}a,b,c:\mBbbZ{}.  (((a  *  a  *  a)  +  (b  *  b  *  b)  +  (c  *  c  *  c))  =  k)
    \mLeftarrow{}{}\mRightarrow{}  \mexists{}d:\mBbbN{}
              \mexists{}e:\mBbbZ{}.  ((\mexists{}c:\mBbbZ{}.  (((d  *  e)  -  k)  =  (c  *  c  *  c)))  \mwedge{}  (\mexists{}n:\mBbbN{}.  (((4  *  e)  -  d  *  d)  =  (3  *  n  *  n)))))



Date html generated: 2019_06_20-PM-02_42_25
Last ObjectModification: 2019_03_16-PM-01_00_36

Theory : num_thy_1


Home Index