Nuprl Lemma : bag-union-is-single
∀[T:Type]. ∀[x:T].
  ∀bbs:bag(bag(T))
    uiff(bag-union(bbs) = {x} ∈ bag(T);↓∃bbs':bag(bag(T))
                                         ((bbs = {x}.bbs' ∈ bag(bag(T))) ∧ (bag-union(bbs') = {} ∈ bag(T))))
Proof
Definitions occuring in Statement : 
bag-union: bag-union(bbs), 
cons-bag: x.b, 
single-bag: {x}, 
empty-bag: {}, 
bag: bag(T), 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
squash: ↓T, 
and: P ∧ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
squash: ↓T, 
prop: ℙ, 
exists: ∃x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
or: P ∨ Q, 
cons: [a / b], 
le: A ≤ B, 
less_than': less_than'(a;b), 
colength: colength(L), 
nil: [], 
it: ⋅, 
guard: {T}, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
less_than: a < b, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
decidable: Dec(P), 
subtype_rel: A ⊆r B, 
single-bag: {x}, 
bag-union: bag-union(bbs), 
concat: concat(ll), 
bag: bag(T), 
quotient: x,y:A//B[x; y], 
cand: A c∧ B, 
true: True, 
bag-append: as + bs, 
cons-bag: x.b, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
respects-equality: respects-equality(S;T), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
append: as @ bs, 
empty-bag: {}, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
bag_wf, 
bag-union_wf, 
single-bag_wf, 
squash_wf, 
equal_wf, 
cons-bag_wf, 
equal-wf-T-base, 
istype-universe, 
bag_to_squash_list, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
list-cases, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-false, 
istype-le, 
list_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
le_wf, 
cons_wf, 
list-subtype-bag, 
istype-nat, 
reduce_nil_lemma, 
permutation-length, 
length_of_nil_lemma, 
length_of_cons_lemma, 
permutation_wf, 
concat-cons2, 
bag-append-is-single-iff, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
subtype-respects-equality, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
bag-append-assoc-comm, 
bag-append-empty, 
bag-subtype-list, 
bag-append_wf, 
nil_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
independent_pairFormation, 
hypothesis, 
sqequalHypSubstitution, 
imageElimination, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
thin, 
baseClosed, 
equalityIstype, 
universeIsType, 
extract_by_obid, 
isectElimination, 
dependent_functionElimination, 
productEquality, 
lambdaEquality_alt, 
productElimination, 
independent_pairEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
axiomEquality, 
functionIsTypeImplies, 
instantiate, 
universeEquality, 
promote_hyp, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
equalityTransitivity, 
rename, 
setElimination, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
voidElimination, 
unionElimination, 
sqequalBase, 
hypothesis_subsumption, 
because_Cache, 
dependent_set_memberEquality_alt, 
baseApply, 
closedConclusion, 
applyEquality, 
intEquality, 
pertypeElimination, 
cumulativity, 
productIsType
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].
    \mforall{}bbs:bag(bag(T))
        uiff(bag-union(bbs)  =  \{x\};\mdownarrow{}\mexists{}bbs':bag(bag(T)).  ((bbs  =  \{x\}.bbs')  \mwedge{}  (bag-union(bbs')  =  \{\})))
 Date html generated: 
2019_10_15-AM-11_00_22
 Last ObjectModification: 
2018_11_30-AM-09_57_39
Theory : bags
Home
Index