Nuprl Lemma : l_find_wf

[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ 𝔹].
  (l_find(L;P) ∈ (∃x:T [(∃i:ℕ||L||. ((x L[i] ∈ T) ∧ (↑(P x)) ∧ (∀j:ℕi. (¬↑(P L[j])))))]) ∨ (↓∀i:ℕ||L||. (¬↑(P L[i]))))


Proof




Definitions occuring in Statement :  l_find: l_find(L;P) l_member: (x ∈ l) select: L[n] length: ||as|| list: List int_seg: {i..j-} assert: b bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] not: ¬A squash: T or: P ∨ Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] l_find: l_find(L;P) int_seg: {i..j-} lelt: i ≤ j < k squash: T so_lambda: λ2x.t[x] so_apply: x[s] sq_exists: x:A [B[x]] cons: [a b] colength: colength(L) decidable: Dec(P) sq_type: SQType(T) less_than: a < b less_than': less_than'(a;b) exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b le: A ≤ B nat_plus: + true: True cand: c∧ B l_member: (x ∈ l) iff: ⇐⇒ Q rev_implies:  Q subtract: m
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf l_member_wf bool_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases length_of_nil_lemma stuck-spread base_wf reduce_nil_lemma int_seg_properties assert_wf nil_wf int_seg_wf sq_exists_wf exists_wf all_wf not_wf product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int length_of_cons_lemma reduce_cons_lemma eqtt_to_assert eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot cons_wf list_wf false_wf add_nat_plus length_wf_nat nat_plus_wf nat_plus_properties decidable__lt add-is-int-iff lelt_wf length_wf select-cons-hd select_wf int_seg_subtype_nat non_neg_length list-subtype squash_wf subtype_rel_dep_function subtype_rel_sets cons_member subtype_rel_self set_wf add-member-int_seg2 select-cons-tl add-subtract-cancel select-cons le_int_wf assert_of_le_int or_wf subtype_rel_list_set
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry functionEquality setEquality cumulativity applyEquality because_Cache unionElimination baseClosed inrEquality productElimination functionExtensionality imageMemberEquality productEquality promote_hyp hypothesis_subsumption applyLambdaEquality dependent_set_memberEquality addEquality instantiate imageElimination equalityElimination universeEquality inlEquality pointwiseFunctionality baseApply closedConclusion inrFormation

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].
    (l\_find(L;P)  \mmember{}  (\mexists{}x:T  [(\mexists{}i:\mBbbN{}||L||.  ((x  =  L[i])  \mwedge{}  (\muparrow{}(P  x))  \mwedge{}  (\mforall{}j:\mBbbN{}i.  (\mneg{}\muparrow{}(P  L[j])))))])
      \mvee{}  (\mdownarrow{}\mforall{}i:\mBbbN{}||L||.  (\mneg{}\muparrow{}(P  L[i]))))



Date html generated: 2018_05_21-PM-06_36_00
Last ObjectModification: 2017_07_26-PM-04_52_43

Theory : general


Home Index