Nuprl Lemma : wilson-theorem
∀n:{i:ℤ| 1 < i} . (prime(n) 
⇐⇒ (n - 1)! ≡ (-1) mod n)
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
fact: (n)!
, 
eqmod: a ≡ b mod m
, 
prime: prime(a)
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
set: {x:A| B[x]} 
, 
subtract: n - m
, 
minus: -n
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
cand: A c∧ B
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
label: ...$L... t
, 
sq_stable: SqStable(P)
, 
guard: {T}
, 
true: True
, 
subtract: n - m
, 
uiff: uiff(P;Q)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
inject: Inj(A;B;f)
, 
cyclic-map: cyclic-map(T)
, 
injection: A →⟶ B
, 
respects-equality: respects-equality(S;T)
, 
compose: f o g
, 
rotate-by: rotate-by(n;i)
, 
ge: i ≥ j 
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
equipollent: A ~ B
, 
biject: Bij(A;B;f)
, 
surject: Surj(A;B;f)
, 
divides: b | a
, 
prime: prime(a)
, 
eqmod: a ≡ b mod m
, 
pm_equal: i = ± j
Lemmas referenced : 
prime_wf, 
eqmod_wf, 
fact_wf, 
subtract_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-less_than, 
equal_wf, 
rotate-by-rotate-by, 
subtype_rel_sets_simple, 
less_than_wf, 
le_wf, 
int_seg_properties, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
sq_stable__less_than, 
rotate-by_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
decidable__lt, 
iff_weakening_equal, 
add-commutes, 
add-swap, 
add-associates, 
zero-add, 
rotate-by-trivial-test, 
int_seg_wf, 
subtract-add-cancel, 
rotate-by-trivial, 
eqmod-prime-order-fixedpoints, 
nat_plus_subtype_nat, 
cyclic-map_wf, 
cyclic-map-conjugate, 
count-cyclic-map, 
istype-false, 
not-lt-2, 
less-iff-le, 
add_functionality_wrt_le, 
le-add-cancel, 
equipollent_wf, 
inject_wf, 
fun_exp_wf, 
compose_wf, 
respects-equality-set, 
injection_wf, 
all_wf, 
exists_wf, 
nat_wf, 
istype-nat, 
respects-equality-set-trivial, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
squash_wf, 
true_wf, 
istype-universe, 
subtype_rel_self, 
nat_properties, 
ge_wf, 
add-comm, 
rem_bounds_1, 
rem_eq_args_z, 
nequal_wf, 
absval_wf, 
add_functionality_wrt_eq, 
subtract-1-ge-0, 
subtype_base_sq, 
rem_base_case, 
less_than_transitivity2, 
itermMinus_wf, 
int_term_value_minus_lemma, 
minus-add, 
minus-minus, 
minus-one-mul, 
rem_addition, 
le_weakening2, 
rem_rec_case, 
add-mul-special, 
one-mul, 
zero-mul, 
iterate-rotate-by, 
mul-commutes, 
rem-zero, 
subtract_nat_wf, 
false_wf, 
int_seg_subtype_nat, 
subtract-is-int-iff, 
rotate-by-cyclic-map, 
gcd-prime, 
add-member-int_seg2, 
equal-wf-base-T, 
compose-rotate-by, 
biject_wf, 
iterated-conjugate, 
mul_bounds_1a, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
divides_reflexivity, 
rotate-by-is-id, 
eqmod-zero, 
eqmod_functionality_wrt_eqmod, 
eqmod_weakening, 
subtract_functionality_wrt_eqmod, 
primality-test, 
divides_wf, 
assoced_nelim, 
mul_preserves_le, 
mul_preserves_lt, 
multiply-is-int-iff, 
divides_add, 
divides-fact, 
divides_product, 
only_pm_one_divs_one
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
applyEquality, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
minusEquality, 
setIsType, 
imageElimination, 
intEquality, 
productElimination, 
imageMemberEquality, 
baseClosed, 
addEquality, 
productIsType, 
applyLambdaEquality, 
setEquality, 
functionIsType, 
equalityIstype, 
functionEquality, 
sqequalBase, 
functionExtensionality_alt, 
instantiate, 
universeEquality, 
intWeakElimination, 
axiomEquality, 
functionIsTypeImplies, 
remainderEquality, 
closedConclusion, 
cumulativity, 
multiplyEquality, 
hyp_replacement, 
functionExtensionality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
inlFormation_alt
Latex:
\mforall{}n:\{i:\mBbbZ{}|  1  <  i\}  .  (prime(n)  \mLeftarrow{}{}\mRightarrow{}  (n  -  1)!  \mequiv{}  (-1)  mod  n)
Date html generated:
2019_10_15-AM-11_23_06
Last ObjectModification:
2018_12_08-AM-11_51_50
Theory : general
Home
Index