Nuprl Lemma : fps-set-to-one-one
∀[r:CRng]. ∀[y:Atom]. ∀[n:ℕ].  ([1]_n(y:=1) = if (n =z 0) then 1 else 0 fi  ∈ PowerSeries(r))
Proof
Definitions occuring in Statement : 
fps-set-to-one: [f]_n(y:=1), 
fps-one: 1, 
fps-zero: 0, 
power-series: PowerSeries(X;r), 
nat: ℕ, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
uall: ∀[x:A]. B[x], 
natural_number: $n, 
atom: Atom, 
equal: s = t ∈ T, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
fps-zero: 0, 
fps-one: 1, 
fps-coeff: f[b], 
fps-set-to-one: [f]_n(y:=1), 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
bor: p ∨bq, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
le: A ≤ B, 
less_than': less_than'(a;b), 
not: ¬A, 
ge: i ≥ j , 
int_upper: {i...}, 
crng: CRng, 
rng: Rng, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
prop: ℙ, 
less_than: a < b, 
squash: ↓T, 
bag-count: (#x in bs), 
count: count(P;L), 
reduce: reduce(f;k;as), 
list_ind: list_ind, 
empty-bag: {}, 
nil: [], 
bag-size: #(bs), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
decidable: Dec(P), 
true: True, 
band: p ∧b q
Lemmas referenced : 
fps-ext, 
fps-set-to-one_wf, 
fps-one_wf, 
ifthenelse_wf, 
eq_int_wf, 
power-series_wf, 
fps-zero_wf, 
lt_int_wf, 
bag-count_wf, 
atom-deq_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
upper_subtype_nat, 
istype-false, 
nat_properties, 
nequal-le-implies, 
zero-add, 
istype-le, 
rng_zero_wf, 
bool_wf, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
istype-less_than, 
bag-size_wf, 
bag_wf, 
istype-nat, 
istype-atom, 
crng_wf, 
bag-null_wf, 
assert-bag-null, 
equal-wf-T-base, 
length_of_nil_lemma, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal-empty-bag, 
empty_bag_append_lemma, 
bag_size_empty_lemma, 
bag-null-rep, 
subtract_wf, 
decidable__le, 
intformnot_wf, 
intformle_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
int_subtype_base, 
decidable__equal_int, 
bag_null_empty_lemma, 
rng_one_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
bag-null-append, 
bag-rep_wf, 
list-subtype-bag, 
bfalse_wf, 
subtype_rel_self, 
iff_weakening_equal, 
iff_imp_equal_bool, 
bool_cases, 
band_wf, 
btrue_wf, 
iff_functionality_wrt_iff, 
false_wf, 
iff_transitivity, 
assert_of_band, 
istype-assert
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
atomEquality, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
natural_numberEquality, 
productElimination, 
independent_isectElimination, 
lambdaFormation_alt, 
sqequalRule, 
applyEquality, 
because_Cache, 
inhabitedIsType, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
independent_functionElimination, 
voidElimination, 
hypothesis_subsumption, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
cumulativity, 
universeIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
hyp_replacement, 
applyLambdaEquality, 
imageElimination, 
baseClosed, 
sqequalBase, 
approximateComputation, 
int_eqEquality, 
intEquality, 
universeEquality, 
closedConclusion, 
imageMemberEquality, 
productEquality, 
productIsType
Latex:
\mforall{}[r:CRng].  \mforall{}[y:Atom].  \mforall{}[n:\mBbbN{}].    ([1]\_n(y:=1)  =  if  (n  =\msubz{}  0)  then  1  else  0  fi  )
 Date html generated: 
2019_10_16-AM-11_36_29
 Last ObjectModification: 
2018_11_26-PM-03_09_16
Theory : power!series
Home
Index