Nuprl Lemma : q-rel-decider_wf
∀r:ℤ. ∀x:ℚ.  (q-rel-decider(r;x) ∈ Dec(q-rel(r;x)))
Proof
Definitions occuring in Statement : 
q-rel-decider: q-rel-decider(r;x), 
q-rel: q-rel(r;x), 
rationals: ℚ, 
decidable: Dec(P), 
all: ∀x:A. B[x], 
member: t ∈ T, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
q-rel-decider: q-rel-decider(r;x), 
q-rel: q-rel(r;x), 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
exposed-btrue: exposed-btrue, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
band: p ∧b q, 
bnot: ¬bb, 
bfalse: ff, 
decidable: Dec(P), 
not: ¬A, 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
exposed-it: exposed-it, 
bor: p ∨bq, 
prop: ℙ, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
guard: {T}, 
assert: ↑b, 
false: False, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top
Lemmas referenced : 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
qeq_wf2, 
assert-qeq, 
equal-wf-base-T, 
rationals_wf, 
false_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bor_wf, 
qpositive_wf, 
bfalse_wf, 
assert-qpositive, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
qless_wf, 
int-subtype-rationals, 
neg_assert_of_eq_int, 
qle_witness, 
qle_weakening_eq_qorder, 
qle_weakening_lt_qorder, 
qless_complement_qorder, 
qle_antisymmetry, 
qless_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
applyEquality, 
inlEquality, 
axiomEquality, 
functionEquality, 
baseClosed, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
inrEquality
Latex:
\mforall{}r:\mBbbZ{}.  \mforall{}x:\mBbbQ{}.    (q-rel-decider(r;x)  \mmember{}  Dec(q-rel(r;x)))
Date html generated:
2018_05_22-AM-00_19_02
Last ObjectModification:
2017_07_26-PM-06_53_48
Theory : rationals
Home
Index