Nuprl Lemma : qle-minus
∀[a,b:ℚ].  uiff(a ≤ b;-(b) ≤ -(a))
Proof
Definitions occuring in Statement : 
qle: r ≤ s, 
qmul: r * s, 
rationals: ℚ, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
minus: -n, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
nat_plus: ℕ+, 
cand: A c∧ B, 
not: ¬A, 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
prop: ℙ, 
qmul: r * s, 
qle: r ≤ s, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
grp_leq: a ≤ b, 
qadd_grp: <ℚ+>, 
grp_le: ≤b, 
pi2: snd(t), 
pi1: fst(t), 
infix_ap: x f y, 
q_le: q_le(r;s), 
qeq: qeq(r;s), 
qsub: r - s, 
qpositive: qpositive(r), 
qadd: r + s, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
bfalse: ff, 
uiff: uiff(P;Q), 
or: P ∨ Q, 
decidable: Dec(P), 
sq_type: SQType(T), 
guard: {T}, 
band: p ∧b q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
q-elim, 
nat_plus_properties, 
iff_weakening_uiff, 
assert_wf, 
qeq_wf2, 
int-subtype-rationals, 
equal-wf-base, 
rationals_wf, 
int_subtype_base, 
assert-qeq, 
istype-assert, 
qdiv-int-elim, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
nequal_wf, 
valueall-type-has-valueall, 
product-valueall-type, 
int-valueall-type, 
evalall-reduce, 
uiff_wf, 
qle_wf, 
qdiv_wf, 
qmul_wf, 
qle_witness, 
decidable__or, 
less_than_wf, 
decidable__cand, 
istype-less_than, 
decidable__lt, 
decidable__equal_int, 
intformnot_wf, 
intformor_wf, 
itermAdd_wf, 
itermMultiply_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_or_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
bor_wf, 
lt_int_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
band_wf, 
btrue_wf, 
assert_of_lt_int, 
bfalse_wf, 
eq_int_wf, 
mul-associates, 
mul-commutes, 
one-mul, 
add-commutes, 
iff_transitivity, 
assert_of_bor, 
assert_of_band, 
assert_of_eq_int, 
assert_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
isectElimination, 
hypothesis, 
setElimination, 
rename, 
lambdaFormation_alt, 
independent_functionElimination, 
applyEquality, 
sqequalRule, 
closedConclusion, 
natural_numberEquality, 
baseClosed, 
because_Cache, 
dependent_set_memberEquality_alt, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
equalityIstype, 
inhabitedIsType, 
sqequalBase, 
equalitySymmetry, 
intEquality, 
callbyvalueReduce, 
sqleReflexivity, 
isintReduceTrue, 
minusEquality, 
productEquality, 
independent_pairEquality, 
multiplyEquality, 
addEquality, 
hyp_replacement, 
applyLambdaEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
equalityTransitivity, 
unionEquality, 
baseApply, 
unionElimination, 
inlFormation_alt, 
unionIsType, 
productIsType, 
instantiate, 
cumulativity, 
promote_hyp, 
inrFormation_alt
Latex:
\mforall{}[a,b:\mBbbQ{}].    uiff(a  \mleq{}  b;-(b)  \mleq{}  -(a))
Date html generated:
2020_05_20-AM-09_16_37
Last ObjectModification:
2020_01_25-AM-11_55_28
Theory : rationals
Home
Index