Nuprl Lemma : qrep-coprime
∀[r:ℚ]. (|gcd(fst(qrep(r));snd(qrep(r)))| = 1 ∈ ℤ)
Proof
Definitions occuring in Statement : 
qrep: qrep(r), 
rationals: ℚ, 
gcd: gcd(a;b), 
absval: |i|, 
uall: ∀[x:A]. B[x], 
pi1: fst(t), 
pi2: snd(t), 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
false: False, 
assert: ↑b, 
bnot: ¬bb, 
guard: {T}, 
sq_type: SQType(T), 
or: P ∨ Q, 
bfalse: ff, 
pi2: snd(t), 
pi1: fst(t), 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
spreadn: spread3, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
has-valueall: has-valueall(a), 
has-value: (a)↓, 
callbyvalueall: callbyvalueall, 
nat: ℕ, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
top: Top, 
implies: P ⇒ Q, 
qmul: r * s, 
qinv: 1/r, 
qrep: qrep(r), 
qdiv: (r/s), 
prop: ℙ, 
uimplies: b supposing a, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
subtype_rel: A ⊆r B, 
not: ¬A, 
cand: A c∧ B, 
nat_plus: ℕ+, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
gcd_p: GCD(a;b;y), 
coprime: CoPrime(a,b), 
assoced: a ~ b, 
absval: |i|, 
rev_implies: P ⇐ Q, 
true: True, 
less_than': less_than'(a;b), 
le: A ≤ B, 
squash: ↓T, 
iff: P ⇐⇒ Q, 
ge: i ≥ j , 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced : 
le_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_le_int, 
eqtt_to_assert, 
bool_wf, 
le_int_wf, 
gcd_reduce_wf, 
gcd_reduce_property, 
evalall-sqequal, 
product-valueall-type, 
evalall-reduce, 
int-valueall-type, 
valueall-type-has-valueall, 
nat_wf, 
nat_plus_wf, 
pi2_wf, 
equal_wf, 
pi1_wf_top, 
qrep_wf, 
gcd_wf, 
absval_wf, 
equal-wf-T-base, 
int_subtype_base, 
rationals_wf, 
equal-wf-base, 
not_wf, 
qeq_wf2, 
assert_wf, 
int-subtype-rationals, 
assert-qeq, 
nat_plus_properties, 
q-elim, 
one_divs_any, 
gcd_is_divisor_2, 
gcd_is_divisor_1, 
iff_weakening_equal, 
false_wf, 
absval_pos, 
assoced_elim, 
coprime_bezout_id1, 
coprime_bezout_id2, 
nat_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermMinus_wf, 
itermVar_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_term_value_minus_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf
Rules used in proof : 
cumulativity, 
instantiate, 
promote_hyp, 
dependent_pairFormation, 
equalityElimination, 
unionElimination, 
multiplyEquality, 
closedConclusion, 
baseApply, 
productEquality, 
isintReduceTrue, 
callbyvalueReduce, 
lambdaEquality, 
independent_functionElimination, 
equalityTransitivity, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
independent_pairEquality, 
intEquality, 
lambdaFormation, 
applyLambdaEquality, 
equalitySymmetry, 
hyp_replacement, 
baseClosed, 
because_Cache, 
independent_isectElimination, 
natural_numberEquality, 
sqequalRule, 
applyEquality, 
impliesFunctionality, 
addLevel, 
rename, 
setElimination, 
hypothesis, 
isectElimination, 
productElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_pairFormation, 
imageMemberEquality, 
dependent_set_memberEquality, 
levelHypothesis, 
equalityUniverse, 
imageElimination, 
minusEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
universeIsType, 
equalityIstype, 
inhabitedIsType, 
sqequalBase, 
productIsType
Latex:
\mforall{}[r:\mBbbQ{}].  (|gcd(fst(qrep(r));snd(qrep(r)))|  =  1)
Date html generated:
2020_05_20-AM-09_13_18
Last ObjectModification:
2020_02_01-AM-11_26_41
Theory : rationals
Home
Index