Nuprl Lemma : callbyvalueall_seq-spread

[F,G,H,L,K:Top]. ∀[m,n:ℕ].
  (let x,y callbyvalueall_seq(L;λf.mk_applies(f;K;n);λg.<F[g], G[g]>;n;m) 
   in H[x;y] callbyvalueall_seq(L;λf.mk_applies(f;K;n);λg.H[F[g];G[g]];n;m))


Proof




Definitions occuring in Statement :  mk_applies: mk_applies(F;G;m) callbyvalueall_seq: callbyvalueall_seq(L;G;F;n;m) nat: uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] so_apply: x[s] lambda: λx.A[x] spread: spread def pair: <a, b> sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: decidable: Dec(P) or: P ∨ Q exists: x:A. B[x] ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: sq_type: SQType(T) guard: {T} callbyvalueall_seq: callbyvalueall_seq(L;G;F;n;m) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + le: A ≤ B iff: ⇐⇒ Q rev_implies:  Q subtract: m subtype_rel: A ⊆B less_than': less_than'(a;b) true: True int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  decidable__le subtract_wf nat_properties satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf le_wf decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma equal_wf subtype_base_sq int_subtype_base intformless_wf int_formula_prop_less_lemma ge_wf less_than_wf nat_wf le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot lifting-strict-callbyvalueall strict4-spread top_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel eq_int_wf add-subtract-cancel lelt_wf assert_wf bnot_wf not_wf mk_applies_unroll bool_cases assert_of_eq_int iff_transitivity iff_weakening_uiff assert_of_bnot mk_applies_fun
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis unionElimination dependent_pairFormation dependent_set_memberEquality isectElimination because_Cache natural_numberEquality independent_isectElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll addEquality productElimination instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination intWeakElimination lambdaFormation sqequalAxiom equalityElimination promote_hyp baseClosed applyEquality minusEquality impliesFunctionality

Latex:
\mforall{}[F,G,H,L,K:Top].  \mforall{}[m,n:\mBbbN{}].
    (let  x,y  =  callbyvalueall\_seq(L;\mlambda{}f.mk\_applies(f;K;n);\mlambda{}g.<F[g],  G[g]>n;m) 
      in  H[x;y]  \msim{}  callbyvalueall\_seq(L;\mlambda{}f.mk\_applies(f;K;n);\mlambda{}g.H[F[g];G[g]];n;m))



Date html generated: 2017_10_01-AM-08_41_48
Last ObjectModification: 2017_07_26-PM-04_28_48

Theory : untyped!computation


Home Index