is mentioned by
[fta_mset] | |
Thm* f is a factorization of n g is a factorization of n f = g | [prime_factorization_mset_unique] |
[prime_factorization_exists2] | |
[complete_intseg_mset_isext] | |
Thm* a x < b complete_intseg_mset(a; b; f)(x) = 0 | [complete_intseg_mset_ismin] |
[complete_intseg_mset_wf] | |
Thm* h:({2..(n+1)}). Thm* n = {2..n+1}(h) & is_prime_factorization(2; (n+1); h) | [prime_factorization_exists] |
Thm* 2 n < k+1 Thm* Thm* (i:{2..k}. ni 0<g(i) prime(i)) Thm* Thm* (h:({2..k}). Thm* ({2..k}(g) = {2..k}(h) & is_prime_factorization(2; k; h)) | [prime_factorization_existsLEMMA] |
Thm* prime(z) Thm* Thm* (g':({2..k}). Thm* ({2..k}(g) = {2..k}(g') Thm* (& g'(z) = 0 Thm* (& (u:{2..k}. z<u g'(u) = g(u))) | [can_reduce_composite_factor2] |
Thm* xy<k Thm* Thm* (h:({2..k}). Thm* ({2..k}(g) = {2..k}(h) Thm* (& h(xy) = 0 Thm* (& (u:{2..k}. xy<u h(u) = g(u))) | [can_reduce_composite_factor] |
Thm* xx<k Thm* Thm* {2..k}(g) = {2..k}(split_factor1(g; x)) Thm* & split_factor1(g; x)(xx) = 0 Thm* & (u:{2..k}. xx<u split_factor1(g; x)(u) = g(u)) | [split_factor1_char] |
Thm* xx<k split_factor1(g; x) {2..k} | [split_factor1_wf] |
Thm* xy<k Thm* Thm* x<y Thm* Thm* {2..k}(g) = {2..k}(split_factor2(g; x; y)) Thm* & split_factor2(g; x; y)(xy) = 0 Thm* & (u:{2..k}. xy<u split_factor2(g; x; y)(u) = g(u)) | [split_factor2_char] |
Thm* xy<k split_factor2(g; x; y) {2..k} | [split_factor2_wf] |
Thm* is_prime_factorization(a; b; g) Thm* Thm* is_prime_factorization(a; b; h) {a..b}(g) = {a..b}(h) g = h | [prime_factorization_unique] |
Thm* is_prime_factorization(a; b; f) Thm* Thm* prime(p) Thm* Thm* p | {a..b}(f) {a..b}(f) = p{a..b}(reduce_factorization(f; p)) | [remove_prime_factor] |
Thm* is_prime_factorization(a; b; f) Thm* Thm* prime(p) p | {a..b}(f) p {a..b} & 0<f(p) | [prime_factorization_includes_prime_divisors] |
[prime_divs_exp] | |
Thm* prime(p) Thm* Thm* (a,b:, e:({a..b}). Thm* (a<b p | ( i:{a..b}. e(i)) (i:{a..b}. p | e(i))) | [prime_divs_mul_via_intseg] |
[nat_prime_div_each_factor] | |
Thm* prime(X) Thm* Thm* (X1:. X1<X prime(X1) (a,b:. X1 | ab X1 | a X1 | b)) Thm* Thm* (W:. 0<W W<X (t:. X | tW X | t)) | [nat_prime_div_each_factorLEMMA] |
[factor_divides_evalfactorization] | |
Thm* 0<f(j) Thm* Thm* is_prime_factorization(a; b; f) Thm* Thm* is_prime_factorization(a; b; reduce_factorization(f; j)) | [reduce_fac_pres_isprimefac] |
[sq_stable__is_prime_factorization] | |
[prime_mset_c_is_prime_f] | |
[is_prime_factorization_wf] | |
Thm* 2j 0<f(j) {a..b}(reduce_factorization(f; j))<{a..b}(f) | [eval_reduce_factorization_less] |
Thm* 0<f(z) {a..b}(f) = z{a..b}(reduce_factorization(f; z)) | [eval_factorization_pluck] |
Thm* {a..b}(f){a..b}(g) = {a..b}(i.f(i)+g(i)) | [eval_factorization_prod] |
Thm* {a..b}(f) = 1 (i:{a..b}. f(i) = 0) | [eval_factorization_not_one] |
[eval_factorization_one_c] | |
[eval_factorization_one_b] | |
Thm* f is a factorization of n f is a factorization of n' n = n' | [only_one_factored_by] |
[eval_factorization_one] | |
[only_positives_prime_fed] | |
[eval_factorization_nat_plus] | |
Thm* 0<f(j) (i:{a..b}. reduce_factorization(f; j)(i)f(i)) | [reduce_factorization_bound] |
Thm* 0<f(j) Thm* Thm* 0<g(j) reduce_factorization(f; j) = reduce_factorization(g; j) f = g | [reduce_factorization_cancel] |
Thm* 0<f(j) reduce_factorization(f; j) {a..b} | [reduce_factorization_wf] |
[trivial_factorization_comp2] | |
[trivial_factorization_comp1] | |
[trivial_factorization_wf] | |
Thm* f is a factorization of n Thm* Thm* g is a factorization of n Thm* Thm* (x:{2..(n+1)}. prime_mset_complete(f)(x) = prime_mset_complete(g)(x)) Thm* Thm* f = g | [prime_factorization_limit] |
[prime_factorization_of_wf] | |
[prime_mset_complete_ismin] | |
[prime_mset_complete_isext] | |
[prime_mset_complete_wf] |
In prior sections: int 1 bool 1 int 2 num thy 1 SimpleMulFacts IteratedBinops
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html