PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd ext valcom 1 1 2 1 1 1 1 1 1 1 2 3 2 1 1 1 1 1 1 2 1

1. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. C: (StAlph*)*
5. ||C|| > 0
6. q: St
7. a: Alph
8. p: St
9. I(NDA) = 1of(hd(C))
10. 1of(hd(rev(C))) = q
11. 2of(hd(rev(C))) = nil
12. NDA(q,a,p)
13. i:
14. 0i
15. i < ||map(c. < 1of(c),a.2of(c) > ;C)||+1-1
16. i = ||C||-1
17. NDA(1of(C[i]),hd(rev(2of(C[i]))),1of(C[(i+1)]))
18. 2of(C[(i+1)]) = rev(tl(rev(2of(C[i]))))
19. ||2of(C[i])|| > 0

i < ||C||

By: RWH (LemmaC Thm* f:(AB), as:A*. ||map(f;as)|| = ||as|| ) 15

Generated subgoals:

None


About:
less_thanuniverseallfunctionlistequalintproduct
natural_numbernilapplysubtractaddlambdapaircons