Nuprl Lemma : xxanti_sym_functionality_wrt_breqv
∀[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].  uiff(anti_sym(T;R);anti_sym(T;R')) supposing R <≡>{T} R'
Proof
Definitions occuring in Statement : 
xxanti_sym: anti_sym(T;R)
, 
binrel_eqv: E <≡>{T} E'
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
xxanti_sym: anti_sym(T;R)
, 
binrel_eqv: E <≡>{T} E'
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
anti_sym: AntiSym(T;x,y.R[x; y])
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
anti_sym_wf, 
iff_weakening_uiff, 
anti_sym_functionality_wrt_iff, 
uiff_wf, 
all_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
applyEquality, 
universeEquality, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
addLevel, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
lambdaFormation, 
cumulativity, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    uiff(anti\_sym(T;R);anti\_sym(T;R'))  supposing  R  <\mequiv{}>\{T\}  R'
Date html generated:
2016_05_15-PM-00_01_06
Last ObjectModification:
2015_12_26-PM-11_26_55
Theory : gen_algebra_1
Home
Index