Nuprl Lemma : xxanti_sym_functionality_wrt_breqv

[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].  uiff(anti_sym(T;R);anti_sym(T;R')) supposing R <≡>{T} R'


Proof




Definitions occuring in Statement :  xxanti_sym: anti_sym(T;R) binrel_eqv: E <≡>{T} E' uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] prop: function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  xxanti_sym: anti_sym(T;R) binrel_eqv: E <≡>{T} E' uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q anti_sym: AntiSym(T;x,y.R[x; y]) all: x:A. B[x] implies:  Q subtype_rel: A ⊆B prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  anti_sym_wf iff_weakening_uiff anti_sym_functionality_wrt_iff uiff_wf all_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation hypothesis sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality axiomEquality applyEquality universeEquality because_Cache lemma_by_obid isectElimination addLevel productElimination independent_isectElimination independent_functionElimination lambdaFormation cumulativity independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    uiff(anti\_sym(T;R);anti\_sym(T;R'))  supposing  R  <\mequiv{}>\{T\}  R'



Date html generated: 2016_05_15-PM-00_01_06
Last ObjectModification: 2015_12_26-PM-11_26_55

Theory : gen_algebra_1


Home Index