Nuprl Lemma : xxanti_sym_functionality_wrt_breqv
∀[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ]. uiff(anti_sym(T;R);anti_sym(T;R')) supposing R <≡>{T} R'
Proof
Definitions occuring in Statement :
xxanti_sym: anti_sym(T;R)
,
binrel_eqv: E <≡>{T} E'
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
xxanti_sym: anti_sym(T;R)
,
binrel_eqv: E <≡>{T} E'
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
anti_sym: AntiSym(T;x,y.R[x; y])
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
anti_sym_wf,
iff_weakening_uiff,
anti_sym_functionality_wrt_iff,
uiff_wf,
all_wf,
iff_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
independent_pairFormation,
hypothesis,
sqequalHypSubstitution,
lambdaEquality,
dependent_functionElimination,
thin,
hypothesisEquality,
axiomEquality,
applyEquality,
universeEquality,
because_Cache,
lemma_by_obid,
isectElimination,
addLevel,
productElimination,
independent_isectElimination,
independent_functionElimination,
lambdaFormation,
cumulativity,
independent_pairEquality,
isect_memberEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality
Latex:
\mforall{}[T:Type]. \mforall{}[R,R':T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. uiff(anti\_sym(T;R);anti\_sym(T;R')) supposing R <\mequiv{}>\{T\} R'
Date html generated:
2016_05_15-PM-00_01_06
Last ObjectModification:
2015_12_26-PM-11_26_55
Theory : gen_algebra_1
Home
Index