Nuprl Lemma : bpa-mul_wf

[p:ℕ+]. ∀[x,y:basic-padic(p)].  (bpa-mul(p;x;y) ∈ basic-padic(p))


Proof




Definitions occuring in Statement :  bpa-mul: bpa-mul(p;x;y) basic-padic: basic-padic(p) nat_plus: + uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bpa-mul: bpa-mul(p;x;y) basic-padic: basic-padic(p) nat: nat_plus: + ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop:
Lemmas referenced :  nat_properties nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf p-mul_wf basic-padic_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality dependent_set_memberEquality addEquality setElimination rename because_Cache hypothesis extract_by_obid isectElimination hypothesisEquality dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[x,y:basic-padic(p)].    (bpa-mul(p;x;y)  \mmember{}  basic-padic(p))



Date html generated: 2018_05_21-PM-03_23_46
Last ObjectModification: 2018_05_19-AM-08_22_05

Theory : rings_1


Home Index