Nuprl Lemma : bpa-mul_wf
∀[p:ℕ+]. ∀[x,y:basic-padic(p)].  (bpa-mul(p;x;y) ∈ basic-padic(p))
Proof
Definitions occuring in Statement : 
bpa-mul: bpa-mul(p;x;y)
, 
basic-padic: basic-padic(p)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bpa-mul: bpa-mul(p;x;y)
, 
basic-padic: basic-padic(p)
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
nat_properties, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
p-mul_wf, 
basic-padic_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[x,y:basic-padic(p)].    (bpa-mul(p;x;y)  \mmember{}  basic-padic(p))
Date html generated:
2018_05_21-PM-03_23_46
Last ObjectModification:
2018_05_19-AM-08_22_05
Theory : rings_1
Home
Index